Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Integr Comp Biol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777628

RESUMEN

Science is becoming increasingly interdisciplinary; the widespread emergence of dedicated interdisciplinary journals, conferences, and graduate programs reflects this trend. Interdisciplinary scientific events are extremely valuable in that they offer opportunities for career advancement, especially among early career researchers, for collaboration beyond traditional disciplinary echo chambers, and for the creative generation of innovative solutions to longstanding scientific problems. However, organizing such events can pose unique challenges due to the intentionality required to meaningfully break down the barriers that separate long-independent disciplines. In this paper, we propose five key strategies for organizing and hosting interdisciplinary scientific events. The recommendations offered here apply both to small symposia aiming to contribute an interdisciplinary component to a larger event and to broad interdisciplinary conferences hosting hundreds or thousands of attendees.

2.
Elife ; 132024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488147

RESUMEN

An AuDHD researcher recounts the highs and lows of relocating from the United States to Germany for his postdoc.


Asunto(s)
Trastorno Autístico , Humanos , Investigadores , Alemania
3.
Front Robot AI ; 10: 1145798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920863

RESUMEN

We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world. However, current conservation efforts are primarily human led with assistance from conventional robotic systems which limit their scope and effectiveness, along with negatively impacting the surroundings. In this perspective, we present the field of bioinspired robotics to develop versatile agents for future conservation efforts that can operate in the natural environment while minimizing the disturbance/impact to its inhabitants and the environment's natural state. We provide an operational and environmental framework that should be considered while developing bioinspired robots for conservation. These considerations go beyond addressing the challenges of human-led conservation efforts and leverage the advancements in the field of materials, intelligence, and energy harvesting, to make bioinspired robots move and sense like animals. In doing so, it makes bioinspired robots an attractive, non-invasive, sustainable, and effective conservation tool for exploration, data collection, intervention, and maintenance tasks. Finally, we discuss the development of bioinspired robots in the context of collaboration, practicality, and applicability that would ensure their further development and widespread use to protect and preserve our natural world.

4.
J R Soc Interface ; 20(205): 20230232, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582407

RESUMEN

The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that use technology to aid in the conservation of wildlife. In this review, we present five case studies and infer a framework for designing conservation tools (CT) based on human-wildlife interaction. Successful CT range in complexity from cat collars to machine learning and game theory methodologies and do not require technological expertise to contribute to conservation tool creation. Our goal is to introduce researchers to the field of conservation technology and provide references for guiding the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Animales , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Teoría del Juego , Biología
5.
Biol Open ; 12(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37566395

RESUMEN

Currently, in the field of interdisciplinary work in biology, there has been a significant push by the soft robotic community to understand the motion and maneuverability of hydrostats. This Review seeks to expand the muscular hydrostat hypothesis toward new structures, including plants, and introduce innovative techniques to the hydrostat community on new modeling, simulating, mimicking, and observing hydrostat motion methods. These methods range from ideas of kirigami, origami, and knitting for mimic creation to utilizing reinforcement learning for control of bio-inspired soft robotic systems. It is now being understood through modeling that different mechanisms can inhibit traditional hydrostat motion, such as skin, nostrils, or sheathed layered muscle walls. The impact of this Review will highlight these mechanisms, including asymmetries, and discuss the critical next steps toward understanding their motion and how species with hydrostat structures control such complex motions, highlighting work from January 2022 to December 2022.


Asunto(s)
Músculos , Robótica
6.
HardwareX ; 14: e00405, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36950388

RESUMEN

Automated feeders have long fed mice, livestock, and poultry, but are incapable of feeding zoo animals such as gorillas. In captivity, gorillas eat cut vegetables and fruits in pieces too large to be dispensed by automated feeders. Consequently, captive gorillas are fed manually at set times and locations, keeping them from the exercise and enrichment that accompanies natural foraging. We designed and built ForageFeeder, an automated gorilla feeder that spreads food at random intervals throughout the day. ForageFeeder is an open source and easy to manufacture and modify device, making the feeder more accessible for zoos. The design presented here reduces manual labor for zoo staff and may be a useful tool for studies of animal ethology.

7.
Bioinspir Biomim ; 18(2)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36652720

RESUMEN

Elephants have long been observed to grip objects with their trunk, but little is known about how they adjust their strategy for different weights. In this study, we challenge a female African elephant at Zoo Atlanta to lift 20-60 kg barbell weights with only its trunk. We measure the trunk's shape and wrinkle geometry from a frozen elephant trunk at the Smithsonian. We observe several strategies employed to accommodate heavier weights, including accelerating less, orienting the trunk vertically, and wrapping the barbell with a greater trunk length. Mathematical models show that increasing barbell weights are associated with constant trunk tensile force and an increasing barbell-wrapping surface area due to the trunk's wrinkles. Our findings may inspire the design of more adaptable soft robotic grippers that can improve grip using surface morphology such as wrinkles.


Asunto(s)
Estructuras Animales , Elefantes , Fuerza Muscular , Animales , Femenino , Elefantes/fisiología , Estructuras Animales/fisiología
8.
Proc Natl Acad Sci U S A ; 119(31): e2122563119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35858384

RESUMEN

The elephant's trunk is multifunctional: It must be flexible to wrap around vegetation, but tough to knock down trees and resist attack. How can one appendage satisfy both constraints? In this combined experimental and theoretical study, we challenged African elephants to reach far-away objects with only horizontal extensions of their trunk. Surprisingly, the trunk does not extend uniformly, but instead exhibits a dorsal "joint" that stretches 15% more than the corresponding ventral section. Using material testing with the skin of a deceased elephant, we show that the asymmetry is due in part to patterns of the skin. The dorsal skin is folded and 15% more pliable than the wrinkled ventral skin. Skin folds protect the dorsal section and stretch to facilitate downward wrapping, the most common gripping style when picking up items. The elephant's skin is also sufficiently stiff to influence its mechanics: At the joint, the skin requires 13 times more energy to stretch than the corresponding length of muscle. The use of wrinkles and folds to modulate stiffness may provide a valuable concept for both biology and soft robotics.


Asunto(s)
Elefantes , Nariz , Fenómenos Fisiológicos de la Piel , Piel , Animales , Elefantes/anatomía & histología , Elefantes/fisiología , Nariz/anatomía & histología , Nariz/fisiología
9.
Integr Comp Biol ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35771995

RESUMEN

Zoos offer university researchers unique opportunities to study animals that would be difficult or impractical to find in the wild. However, the different cultures, goals, and priorities of these institutions can be a source of conflict. How can researchers build mutually beneficial collaborations with their local zoo? In this article, we present the results of a survey of 117 personnel from 59 zoos around the United States, where we highlight best practices spanning all phases of collaboration, from planning to working alongside the zoo and maintaining contact afterward. Collaborations were not possible if university personnel did not appreciate the zoo staff's time constraints as well as the differences between zoo animals and laboratory animals. We include a vision for how to improve zoo collaborations, along with a history of our own decade-long collaborations with Zoo Atlanta. A central theme is the long-term establishment of trust between institutions.

10.
J R Soc Interface ; 18(179): 20210215, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34062103

RESUMEN

Despite having a trunk that weighs over 100 kg, elephants mainly feed on lightweight vegetation. How do elephants manipulate such small items? In this experimental and theoretical investigation, we filmed elephants at Zoo Atlanta showing that they can use suction to grab food, performing a behaviour that was previously thought to be restricted to fishes. We use a mathematical model to show that an elephant's nostril size and lung capacity enables them to grab items using comparable pressures as the human lung. Ultrasonographic imaging of the elephant sucking viscous fluids show that the elephant's nostrils dilate up to [Formula: see text] in radius, which increases the nasal volume by [Formula: see text]. Based on the pressures applied, we estimate that the elephants can inhale at speeds of over 150 m s-1, nearly 30 times the speed of a human sneeze. These high air speeds enable the elephant to vacuum up piles of rutabaga cubes as well as fragile tortilla chips. We hope these findings inspire further work in suction-based manipulation in both animals and robots.


Asunto(s)
Elefantes , Animales , Succión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA