RESUMEN
Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58 ± 3% (mean ± SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42 ± 2% (mean ± SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16 ± 4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.
Asunto(s)
Biomasa , Ciclo del Carbono , Árboles/crecimiento & desarrollo , Procesos Autotróficos , Carbono/metabolismo , Respiración de la Célula , Clima , Agricultura Forestal , Fotosíntesis , Raíces de Plantas/microbiología , Árboles/metabolismo , Árboles/microbiologíaRESUMEN
Positive species richness effects on aboveground community productivity in experimental grasslands have been reported to correlate with variable responses of individual species. So far, it is largely unknown whether more complete use of resources at the community level correlates with resource limitation of particular species and may explain their decreasing performance with increasing plant diversity. Using the subordinate grass species Lolium perenne L. as a model, we monitored populations in 82 experimental grasslands of different plant diversity (Jena Experiment) from year 2 to 6 after establishment, and measured ecophysiological leaf traits related to light and nutrient acquisition and use. Population and plant individual sizes of L. perenne decreased with increasing species richness. A decrease in transmitted light with increasing species richness and legume proportion correlated with increasing specific leaf area (SLA). Despite this morphological adaptation to lower light availability, decreasing foliar δ(13) C signatures with increasing species richness and low variation in leaf gas exchange and chlorophyll concentrations suggested a low capacity of L. perenne for adjustment to canopy shade. Leaf nitrogen concentrations and foliar δ(15) N signatures indicated a better N supply in communities with legumes and a shift in the uptake of different N forms with increasing species richness. Leaf blade nitrate and carbohydrate concentrations as indicators of plants nutritional status supported that light limitation with increasing species richness and legume proportions, combined with a N limitation in communities with increasing proportions of non-legumes, correlated with the decreasing performance of L. perenne in communities of increasing plant diversity.
Asunto(s)
Luz , Lolium/metabolismo , Lolium/efectos de la radiación , Nitrógeno/metabolismo , Clorofila/metabolismo , Ecosistema , Lolium/crecimiento & desarrolloRESUMEN
The periodic production of large seed crops by trees (masting) and its interaction with stem growth has long been the objective of tree physiology research. However, very little is known about the effects of masting on stem growth and total net primary productivity (NPP) at the stand scale. This study was conducted in an old-growth, mixed deciduous forest dominated by Fagus sylvatica (L.) and covers the period from 2003 to 2007, which comprised wet, dry and regular years as well as two masts of Fagus and one mast of the co-dominant tree species Fraxinus excelsior (L.) and Acer pseudoplatanus (L.). We combined analyses of weather conditions and stem growth at the tree level (inter- and intra-annual) with fruit, stem and leaf production, and estimates of total NPP at the stand level. Finally, we compared the annual demand of carbon for biomass production with net canopy assimilation (NCA), derived from eddy covariance flux measurements, chamber measurements and modelling. Annual stem growth of Fagus was most favoured by warm periods in spring and that of Fraxinus by high precipitation in June. For stem growth of Acer and for fruit production, no significant relationships with mean weather conditions were found. Intra-annual stem growth of all species was strongly reduced when the relative plant-available water in soil dropped below a threshold of about 60% between May and July. The inter-annual variations of NCA, total NPP and leaf NPP at the stand level were low (mean values 1313, 662 and 168 g C m(-2) year(-1), respectively), while wood and fruit production varied more and contrarily (wood: 169-241 g C m(-2) year(-1); fruits: 21-142 g C m(-2) year(-1)). In all years, an annual surplus of newly assimilated carbon was calculated (on average 100 g C m(-2) year(-1)). The results suggest that stem growth is generally not limited by insufficient carbon resources; only in mast years a short-term carbon shortage may occur in spring. In contrast to common assumption, stem growth alone is not a sufficient proxy for total biomass production or the control of carbon sequestration by weather extremes.
Asunto(s)
Clima , Fagus/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Fraxinus/anatomía & histología , Fraxinus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Suelo , Árboles/anatomía & histología , Tiempo (Meteorología)RESUMEN
Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.
Asunto(s)
Ecosistema , Luz , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Biomasa , Metabolismo de los Hidratos de Carbono , Fabaceae/crecimiento & desarrollo , Alemania , Nitrógeno/metabolismo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrolloRESUMEN
Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
Asunto(s)
Dióxido de Carbono/metabolismo , Productos Agrícolas/metabolismo , Desastres , Ecosistema , Efecto Invernadero , Calor , Atmósfera/química , Carbono/metabolismo , Europa (Continente) , Lluvia , Factores de TiempoRESUMEN
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve-linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100-400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed "mixed boreal forest" is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000-6,000 trees/ha), but Picea becomes dominant after 150-200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40-50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.
Asunto(s)
Incendios , Insectos , Árboles , Viento , Animales , Siberia , Especificidad de la EspecieAsunto(s)
Carbono/metabolismo , Ecosistema , Modelos Biológicos , Modelos Teóricos , Pinus/metabolismo , Federación de RusiaRESUMEN
Temporal patterns of stem and needle production and total aboveground net primary production (ANPP) were studied at the tree and stand level along four chronosequences of Siberian Scots pine (Pinus sylvestris L.) forests differing in site quality (poor lichen type or the more fertile Vaccinium type) and in frequency of surface fires (unburned, moderately burned (fire return interval of approximately 40 years), or heavily burned (fire return interval of approximately 25 years)). The maximum range of variability in aboveground production was quantified for: (1) possible long-term changes in site quality; (2) stand age; (3) non-stand-replacing, recurring surface fires; and (4) interannual climate variability. For (1) and (2), total ANPP was low in the lichen-type chronosequence, reached a maximum of 170 g C m(-2) year(-1) after 100 years and decreased to 100 g C m(-2) year(-1) in older stands. Maximum ANPP in the Vaccinium-type chronosequence was 340 g C m(-2) year(-1) and occurred earlier in the 53-year-old stand than in the other stands. Along the lichen-type chronosequences, peak ANPP was paralleled by maximum carbon allocation to stem growth. (3) In mature trees, damage by recurrent surface fires decreased stem growth by 17 +/- 19% over a 10-year period relative to pre-fire values. At longer timescales, ANPP was hardly affected by fire-related differences in mortality. (4) Needle- plus stem-NPP, reconstructed for a 3-year period, varied within a range of 15 g C m(-2) year(-1) in the lichen-type stands and 35 g C m(-2) year(-1) in the Vaccinium-type stands. For the same period, the coefficient of variance was higher for needle-NPP (20 +/- 10%) than for stem-NPP (12 +/- 7%). Needle- and stem-NPP did not covary in time. Most 30-year time series of stem-NPP at the tree level exhibited strong autocorrelation. In older trees, stem-NPP was positively correlated with growing season precipitation. Thus, the factors driving variability in ANPP ranked according to their maximum influence as: stand age (controlled by the frequency of stand-replacing fires) > site quality > growth depression because of surface fire damage approximately equal age-related reduction in ANPP > interannual variability approximately equal long-term effects of fire (stand density reduction). In lichen-type forests, we found that ANPP at the landscape level declined sharply when the interval between stand-replacing fires was less than 120 years, illustrating that fire strongly influences ANPP of boreal Scots pine forests.
Asunto(s)
Pinus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Clima , Ambiente , Incendios , Pinus/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Siberia , Factores de Tiempo , Árboles/fisiologíaRESUMEN
Water use, both at the level of a single leaf and the whole plant, was studied for 1- to 4-year-old almond trees (Prunus dulcis) under arid conditions in the Negev Desert (Israel). By planting the trees into lysimeters of different volumes (7, 14 and 21 m3), the amount of water available to the plants was experimentally controlled. Each year, at the beginning of the growing season, the lysimeters, which had been filled with local homogenized loess, were watered to field capacity. The trees received different relative amounts of water in relation to their leaf area on the one hand and lysimeter volume on the other, which caused different rates of soil drying throughout the season. The following hypotheses were tested. (1) The amount of CO2 assimilated per transpiration and (2) biomass production per unit of water used increases with (a) decreasing amount of soil water applied and (b) increasing leaf area, which should enhance growth in spring during periods of low evaporative demand. At the leaf level, the ratio of daily CO2 assimilation (A) to daily transpiration (E) was independent of lysimeter size, leaf area and pre-dawn water potential, but decreased with increasing leaf-to-air vapour pressure difference (D l). Consequently, during the course of the season, A/E decreased from spring to summer in accordance with rising D l. However, when measured at a constant D l, the seasonal course in A/E disappeared. At the whole plant level, the ratio of total lifetime biomass production (B) to the amount of water transpired (W) increased with leaf area (i.e. demand for water), the increase being stronger with increasing water supply. We conclude that almond trees did not adapt physiologically to a limited water supply, but maximized their carbon gain for a given amount of water available by phenological processes such as high growth rate during periods of low evaporative demand of the atmosphere.
RESUMEN
Dionaea is a highly specialized carnivorous plant species with a unique mechanism for insect capture. The leaf is converted into an osmotically driven trap that closes when an insect triggers sensory trichomes. This study investigates the significance of insect capture for growth of Dionaea at different successional stages after a fire, under conditions where the prey is highly variable in its isotope signature. The contribution of insect-derived nitrogen (N) was estimated using the natural abundance of 15N. In contrast to previous 15N studies on carnivorous plants, the problem emerges that delta15N values of prey insects ranged between -4.47 per thousand (grasshoppers) and +7.21 per thousand (ants), a range that exceeds the delta15N values of non carnivorous reference plants (-4.2 per thousand) and soils (+3 per thousand). Thus, the isotope-mixing model used by Shearer and Kohl to estimate the amount of insect-derived N is not applicable. In a novel approach, the relationships of delta15N values of different organs with delta15N of trapping leaves were used to estimate N partitioning within the plant. It is estimated that soon after fire approximately 75% of the nitrogen is obtained from insects, regardless of plant size or developmental stage. The estimates are verified by calculating the average isotope signatures of insects from an isotope mass balance and comparing this with the average measured delta15N values of insects. It appears that for Dionaea to survive and reach the flowering stage, seedlings must first reach the 6th-leaf rosette stage, in which trap surface area nearly doubles and facilitates the capture of large insects. Large amounts of nitrogen thus made available to plants may facilitate an enhanced growth rate and the progressive production of additional large traps. Dionaea reaches a maximum abundance after fire when growth of the competing vegetation is suppressed. About 10 years after fire, when grasses and shrubs recover, Dionaea becomes overtopped by other species. This would not only reduce carbon assimilation but also the probability of catching larger prey. The amount of insect-derived nitrogen decreases to 46%, and Dionaea becomes increasingly dependent on N-supply from the soil. Competition for both light and N may cause the near disappearance of Dionaea in older stages of the fire succession.
Asunto(s)
Insectos/metabolismo , Magnoliopsida/metabolismo , Nitrógeno/metabolismo , Animales , Carbono/metabolismoRESUMEN
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha(-1) yr(-1), with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.
Asunto(s)
Carbono/metabolismo , Árboles , Atmósfera , Ecosistema , Europa (Continente) , Oxígeno/metabolismo , Fotosíntesis , SueloRESUMEN
Changes in carbon stocks during deforestation, reforestation and afforestation play an important role in the global carbon cycle. Cultivation of forest lands leads to substantial losses in both biomass and soil carbon, whereas forest regrowth is considered to be a significant carbon sink. We examined below- and aboveground carbon stocks along a chronosequence of Norway spruce (Picea abies (L.) Karst.) stands (0-62 years old) regenerating on abandoned meadows in the Southern Alps. A 130-year-old mixed coniferous Norway spruce-white fir (Abies alba Mill.) forest, managed by selection cutting, was used as an undisturbed control. Deforestation about 260 years ago led to carbon losses of 53 Mg C ha(-1) from the organic layer and 12 Mg C ha(-1) from the upper mineral horizons (Ah, E). During the next 200 years of grassland use, the new Ah horizon sequestered 29 Mg C ha(-1). After the abandonment of these meadows, carbon stocks in tree stems increased exponentially during natural forest succession, levelling off at about 190 Mg C ha(-1) in the 62-year-old Norway spruce and the 130-year-old Norway spruce-white fir stands. In contrast, carbon stocks in the organic soil layer increased linearly with stand age. During the first 62 years, carbon accumulated at a rate of 0.36 Mg C ha(-1) year(-1) in the organic soil layer. No clear trend with stand age was observed for the carbon stocks in the Ah horizon. Soil respiration rates were similar for all forest stands independently of organic layer thickness or carbon stocks, but the highest rates were observed in the cultivated meadow. Thus, increasing litter inputs by forest vegetation compared with the meadow, and constantly low decomposition rates of coniferous litter were probably responsible for continuous soil carbon sequestration during forest succession. Carbon accumulation in woody biomass seemed to slow down after 60 to 80 years, but continued in the organic soil layer. We conclude that, under present climatic conditions, forest soils act as more persistent carbon sinks than vegetation that will be harvested, releasing the carbon sequestered during tree growth.
Asunto(s)
Carbono/metabolismo , Árboles/fisiología , Biomasa , Dióxido de Carbono/metabolismo , Ecología , Italia , Suelo , Árboles/metabolismo , AguaRESUMEN
At eight European field sites, the impact of loss of plant diversity on primary productivity was simulated by synthesizing grassland communities with different numbers of plant species. Results differed in detail at each location, but there was an overall log-linear reduction of average aboveground biomass with loss of species. For a given number of species, communities with fewer functional groups were less productive. These diversity effects occurred along with differences associated with species composition and geographic location. Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.
RESUMEN
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kgdw m-2 after 200 years depending on stand density and fire history compared to 20 kgdw m-2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
RESUMEN
Downward transport of water in roots, in the following termed "inverse hydraulic lift," has previously been shown with heat flux techniques. But water flow into deeper soil layers was demonstrated in this study for the first time when investigating several perennial grass species of the Kalahari Desert under field conditions. Deuterium labelling was used to show that water acquired by roots from moist sand in the upper profile was transported through the root system to roots deeper in the profile and released into the dry sand at these depths. Inverse hydraulic lift may serve as an important mechanism to facilitate root growth through the dry soil layers underlaying the upper profile where precipitation penetrates. This may allow roots to reach deep sources of moisture in water-limited ecosystems such as the Kalahari Desert.
RESUMEN
Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.
RESUMEN
Although nitrate reductase (NR. EC 1.6.6.1) is thought to control the rate of nitrate assimilation, mutants with 40-45% of wildtype (WT) NR activity (NRA) grow as fast as the WT. We have investigated how tobacco (Nicotiana tabacum L. cv. Gatersleben) mutants with one or two instead of four functional nia genes compensate. (i) The nia transcript was higher in the leaves of the mutants. However, the diurnal rhythm was retained in the mutants, with a maximum at the end of the night and a strong decline during the photoperiod. (ii) Nitrate reductase protein and NRA rose to a maximum after 3-4 h light in WT leaves, and then decreased by 50-60% during the second part of the photoperiod and the first part of the night. Leaves of mutants contained 40-60% less NR protein and NRA after 3-4 h illumination, but NR did not decrease during the photoperiod. At the end of the photoperiod the WT and the mutants contained similar levels of NR protein and NRA. (iii) Darkening led to a rapid inactivation of NR in the WT and the mutants. However, in the mutants, this inactivation was reversed after 1-3 h darkness. Calyculin A prevented this reversal. When magnesium was included in the assay to distinguish between the active and inactive forms of NR, mutants contained 50% more activity than the WT during the night. Conversion of [15N]-nitrate to organic compounds in leaves in the first 6 h of the night was 60% faster in the mutants than in the WT. (iv) Growth of WT plants in enhanced carbon dioxide prevented the decline of NRA during the second part of the photoperiod, and led to reactivation of NR in the dark. (v) Increased stability of NR in the light and reversal of dark-inactivation correlated with decreased levels of glutamine in the leaves. When glutamine was supplied to detached leaves it accelerated the breakdown of NR, and led to inactivation of NR, even in the light. (vi) Diurnal changes were also investigated in roots. In the WT, the amount of nia transcript rose to a maximum after 4 h illumination and then gradually decreased. The amplitude of the changes in transcript amount was smaller in roots than in leaves, and there were no diurnal changes in NRA. In mutants, nia transcript levels were high through the photoperiod and the first part of the night. The NRA was 50% lower during the day but rose during the night to an activity almost as high as in the WT. The rate of [15N]-nitrate assimilation in the roots of the mutants resembled that in the WT during the first 6 h of the night. (vii) Diurnal changes were also compared in Nia30(145) transformants with very low NRA, and in nitrate-deficient WT plants. Both sets of plants had similar low growth rates. Nitrate reductase did not show a diurnal rhythm in leaves or roots of Nia30(145), the leaves contained very low glutamine, and NR did not inactivate in the dark. Nitrate-deficient WT plants were watered each day with 0.2 mM nitrate. After watering, there was a small peak of nia transcript NR protein and NRA and, slightly later, a transient increase of glutamine and other amino acids in the leaves. During the night glutamine was low, and NR did not inactivate. In the roots, there was a very marked increase of nitrate, nia transcript and NRA 2-3 h after the daily watering with 0.2 mM nitrate. (viii) It is concluded that WT plants have excess capacity for nitrate assimilation. They only utilise this potential capacity for a short time each day, and then down-regulate nitrate assimilation in response, depending on the conditions, to accumulation of the products of nitrate assimilation or exhaustion of external nitrate. Genotypes with a lower capacity for nitrate assimilation compensate by increasing expression of NR and weakening the feedback regulation, to allow assimilation to continue for a longer period each day.