Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Adv Sci (Weinh) ; : e2403516, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868948

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.

2.
Eur J Cell Biol ; 103(2): 151411, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582051

RESUMEN

Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.

3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612635

RESUMEN

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Asunto(s)
Aductos de ADN , Glucosinolatos , Ratones , Humanos , Animales , Ratas , Ratones Noqueados , Cromatografía Liquida , Espectrometría de Masas en Tándem , Arilsulfotransferasa/genética
4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542220

RESUMEN

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Esfingomielina Fosfodiesterasa , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Ácido Oléico/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/metabolismo , Triglicéridos/metabolismo
5.
Tuberculosis (Edinb) ; 147: 102493, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547568

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.


Asunto(s)
Apoptosis , Caveolina 1 , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium bovis , Esfingomielina Fosfodiesterasa , Tuberculosis , Animales , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Mycobacterium bovis/patogenicidad , Macrófagos/microbiología , Macrófagos/metabolismo , Tuberculosis/microbiología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/patología , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/deficiencia , Autofagia , Interacciones Huésped-Patógeno , Modelos Animales de Enfermedad , Carga Bacteriana , Citocinas/metabolismo , Ceramidas/metabolismo , Hígado/microbiología , Hígado/metabolismo , Hígado/patología , Células Cultivadas , Ratones , Mediadores de Inflamación/metabolismo , Factores de Tiempo
6.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256910

RESUMEN

Inflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 (IL-6) and other key inflammatory cytokines. JAK inhibitors, such as tofacitinib, bind to these enzymes which are coupled to receptors on cell surfaces and block the transcription of inflammatory cytokine-induced genes. The first topical applications are being marketed, yet insufficient effects regarding indications, such as alopecia areata, suggest that improved delivery technologies could help increase the efficacy. In this study, we used sulfated dendritic polyglycerol with caprolactone segments integrated in its backbone (dPGS-PCL), with a molecular weight of 54 kDa, as a degradable carrier to load and solubilize the hydrophobic drug tofacitinib (TFB). TFB loaded in dPGS-PCL (dPGS-PCL@TFB), at a 11 w/w% loading capacity in aqueous solution, showed in an ex-vivo human skin model better penetration than free TFB in a 30:70 (v/v) ethanol/water mixture. We also investigated the anti-inflammatory efficacy of dPGS-PCL@TFB (0.5 w/w%), dPGS-PCL, and free TFB in the water/ethanol mixture by measuring their effects on IL-6 and IL-8 release, and STAT3 and STAT5 activation in ex vivo skin models of simulated inflamed human skin. Our results suggest that dPGS-PCL@TFB reduces the activation of STAT3 and STAT5 by increasing the penetration of the tofacitinib. However, no statistically significant differences with respect to the inhibition of IL-6 and IL-8 were observed in this short incubation time.

7.
Sci Rep ; 14(1): 1076, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212511

RESUMEN

Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.


Asunto(s)
Arabidopsis , Mariposas Diurnas , Escarabajos , Himenópteros , Animales , Oviposición , Mariposas Diurnas/fisiología , Himenópteros/fisiología , Arabidopsis/genética , Ácido Salicílico , Fosfatidilcolinas
8.
Handb Exp Pharmacol ; 284: 289-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37922034

RESUMEN

Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Animales , Esfingolípidos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Fibrosis Quística/tratamiento farmacológico , Transducción de Señal , Ceramidas , Esfingosina
9.
PLoS Pathog ; 19(11): e1011842, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033162

RESUMEN

Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.


Asunto(s)
Células Endoteliales , Neisseria meningitidis , Receptores de Esfingosina-1-Fosfato/metabolismo , Células Endoteliales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/metabolismo , Encéfalo/metabolismo , Lisofosfolípidos/metabolismo
10.
Nanoscale Adv ; 5(21): 5923-5931, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37881716

RESUMEN

Interactions between graphene, with its wide deployment in consumer products, and skin, the body's largest organ and first barrier, are highly relevant with respect to toxicology and dermal delivery. In this work, interaction of polyglycerol-functionalized graphene sheets, with 200 nm average lateral size and different surface charges, and human skin was studied and their potential as topical delivery systems were investigated. While neutral graphene sheets showed no significant skin interaction, their positively and negatively charged counterparts interacted with the skin, remaining in the stratum corneum. This efficient skin interaction bears a warning but also suggests a new topical drug delivery strategy based on the sheets' high loading capacity and photothermal property. Therefore, the immunosuppressive drug tacrolimus was loaded onto positively and negatively charged graphene sheets, and its release measured with and without laser irradiation using liquid chromatography tandem-mass spectrometry. Laser irradiation accelerated the release of tacrolimus, due to the photothermal property of graphene sheets. In addition, graphene sheets with positive and negative surface charges were loaded with Nile red, and their ability to deliver this cargo through the skin was investigated. Graphene sheets with positive surface charge were more efficient than the negatively charged ones in enhancing Nile red penetration into the skin.

11.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37875262

RESUMEN

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Asunto(s)
Acetilcisteína , Ocimum basilicum , Animales , Humanos , Acetilcisteína/orina , Carcinógenos , Roedores , Cromatografía Liquida , Aductos de ADN , Espectrometría de Masas en Tándem
12.
Cells ; 12(10)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37408189

RESUMEN

Currently, there are no animal models for studying both specific social fear and social fear with comorbidities. Here, we investigated whether social fear conditioning (SFC), an animal model with face, predictive and construct validity for social anxiety disorder (SAD), leads to the development of comorbidities at a later stage over the course of the disease and how this affects the brain sphingolipid metabolism. SFC altered both the emotional behavior and the brain sphingolipid metabolism in a time-point-dependent manner. While social fear was not accompanied by changes in non-social anxiety-like and depressive-like behavior for at least two to three weeks, a comorbid depressive-like behavior developed five weeks after SFC. These different pathologies were accompanied by different alterations in the brain sphingolipid metabolism. Specific social fear was accompanied by increased activity of ceramidases in the ventral hippocampus and ventral mesencephalon and by small changes in sphingolipid levels in the dorsal hippocampus. Social fear with comorbid depression, however, altered the activity of sphingomyelinases and ceramidases as well as the sphingolipid levels and sphingolipid ratios in most of the investigated brain regions. This suggests that changes in the brain sphingolipid metabolism might be related to the short- and long-term pathophysiology of SAD.


Asunto(s)
Depresión , Esfingolípidos , Ratones , Animales , Esfingolípidos/metabolismo , Ceramidasas/metabolismo , Encéfalo/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555152

RESUMEN

This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.


Asunto(s)
Antifúngicos , Candida , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Esfingosina/farmacología , Pruebas de Sensibilidad Microbiana , Aspergillus
14.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362409

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Ceramidas , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico
15.
Elife ; 112022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36426850

RESUMEN

Acid sphingomyelinase (Asm) and acid ceramidase (Ac) are parts of the sphingolipid metabolism. Asm hydrolyzes sphingomyelin to ceramide, which is further metabolized to sphingosine by Ac. Ceramide generates ceramide-enriched platforms that are involved in receptor clustering within cellular membranes. However, the impact of cell-intrinsic ceramide on T cell function is not well characterized. By using T cell-specific Asm- or Ac-deficient mice, with reduced or elevated ceramide levels in T cells, we identified ceramide to play a crucial role in T cell function in vitro and in vivo. T cell-specific ablation of Asm in Smpd1fl/fl/Cd4cre/+ (Asm/CD4cre) mice resulted in enhanced tumor progression associated with impaired T cell responses, whereas Asah1fl/fl/Cd4cre/+ (Ac/CD4cre) mice showed reduced tumor growth rates and elevated T cell activation compared to the respective controls upon tumor transplantation. Further in vitro analysis revealed that decreased ceramide content supports CD4+ regulatory T cell differentiation and interferes with cytotoxic activity of CD8+ T cells. In contrast, elevated ceramide concentration in CD8+ T cells from Ac/CD4cre mice was associated with enhanced cytotoxic activity. Strikingly, ceramide co-localized with the T cell receptor (TCR) and CD3 in the membrane of stimulated T cells and phosphorylation of TCR signaling molecules was elevated in Ac-deficient T cells. Hence, our results indicate that modulation of ceramide levels, by interfering with the Asm or Ac activity has an effect on T cell differentiation and function and might therefore represent a novel therapeutic strategy for the treatment of T cell-dependent diseases such as tumorigenesis.


Asunto(s)
Ceramidas , Melanoma , Animales , Ratones , Ceramidas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Esfingosina/metabolismo , Receptores de Antígenos de Linfocitos T
16.
Eur J Cancer ; 175: 120-124, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113241

RESUMEN

BACKGROUND: Near-tetraploidy-defined by DNA index 1.79-2.28 or 81-103 chromosomes-is a rare cytogenetic abnormality observed both in children and adults with T-cell acute lymphoblastic leukaemia (T-ALL) and its prognostic value is not yet determined. PATIENTS AND METHODS: We report a retrospective study conducted in paediatric patients with newly diagnosed T-ALL treated in AIEOP-BFM ALL 2000 and 2009 studies. 31 near-tetraploid T-ALL patients (1.4%) are compared to T-ALL patients without near-tetraploidy. RESULTS: Near-tetraploid karyotype was associated with lower frequency of high-risk features: white blood cells count at diagnosis ≥100,000/µL (19.3% versus 41.0%, p-value < 0.001), PPR (13.3% versus 35.8%, p-value = 0.01) and minimal residual disease high-risk at the end of consolidation phase Induction B (4.03% versus 14.6%, p-value = 0.001). Complete remission was achieved at the end of induction phase (day 33) in 100% near-tetraploid T-ALL patients, compared to 93.2% T-ALL without near-tetraploidy. CONCLUSION: Overall, we found that near-tetraploid T-ALL in newly diagnosed paediatric patients is associated with low-risk presenting features, with favourable treatment response and outcome.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Niño , ADN , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Pronóstico , Estudios Retrospectivos , Linfocitos T , Tetraploidía , Resultado del Tratamiento
17.
Elife ; 112022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094170

RESUMEN

Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.


Asunto(s)
Malaria , Plasmodium yoelii , Ceramidasa Ácida , Animales , Ceramidas/farmacología , Eritropoyesis , Malaria/tratamiento farmacológico , Ratones , Parasitemia
18.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985814

RESUMEN

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Inflamación , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Factor de Necrosis Tumoral alfa , Niño , Adolescente
19.
J Mol Med (Berl) ; 100(10): 1493-1508, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36045177

RESUMEN

Major depressive disorder (MDD) is a very common, severe disease with a lifetime prevalence of ~ 10%. The pathogenesis of MDD is unknown and, unfortunately, therapy is often insufficient. We have previously reported that ceramide levels are increased in the blood plasma of patients with MDD and in mice with experimental MDD. Here, we demonstrate that ceramide-enriched exosomes in the blood plasma are increased in mice with stress-induced MDD. Genetic studies reveal that neutral sphingomyelinase 2 is required for the formation of ceramide-enriched exosomes in the blood plasma. Accordingly, induced deficiency of neutral sphingomyelinase 2 prevented mice from the development of stress-induced MDD. Intravenous injection of microparticles from mice with MDD or injection of ceramide-loaded exosomes induced MDD-like behavior in untreated mice, which was abrogated by ex vivo pre-incubation of purified exosomes with anti-ceramide antibodies or ceramidase. Mechanistically, injection of exosomes from mice with MDD or injection of ex vivo ceramide-loaded microparticles inhibited phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus, which has been previously shown to mediate MDD by plasma ceramide. In summary, our data indicate that ceramide-enriched exosomes are released by neutral sphingomyelinase 2 into the blood plasma upon stress and mediate stress-induced MDD. KEY MESSAGES: Stress induces ceramide-enriched exosomes in the blood plasma. Ceramide-enriched exosomes mediate major depressive disorder (MDD). Deficiency of neutral sphingomyelinase 2 protects from stress-induced MDD. Neutralization or digestion of ceramide in exosomes prevents stress-induced MDD. Ceramide-enriched exosomes inhibit endothelial phospholipase D in the hippocampus.


Asunto(s)
Trastorno Depresivo Mayor , Exosomas , Fosfolipasa D , Animales , Ceramidas , Células Endoteliales , Ratones , Plasma , Esfingomielina Fosfodiesterasa/genética , Estrés Fisiológico
20.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36038749

RESUMEN

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Asunto(s)
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Desipramina/metabolismo , Desipramina/farmacología , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacología , Isquemia/metabolismo , Ratones , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA