Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665123

RESUMEN

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neuropéptidos , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
2.
J Neurosci ; 43(18): 3202-3218, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36931710

RESUMEN

Neocortical layer 1 (L1) consists of the distal dendrites of pyramidal cells and GABAergic interneurons (INs) and receives extensive long-range "top-down" projections, but L1 INs remain poorly understood. In this work, we systematically examined the distinct dominant electrophysiological features for four unique IN subtypes in L1 that were previously identified from mice of either gender: Canopy cells show an irregular firing pattern near rheobase; neurogliaform cells are late-spiking, and their firing rate accelerates during current injections; cells with strong expression of the α7 nicotinic receptor (α7 cells), display onset (rebound) bursting; vasoactive intestinal peptide (VIP) expressing cells exhibit high input resistance, strong adaptation, and irregular firing. Computational modeling revealed that these diverse neurophysiological features could be explained by an extended exponential-integrate-and-fire neuron model with varying contributions of a slowly inactivating K+ channel, a T-type Ca2+ channel, and a spike-triggered Ca2+-dependent K+ channel. In particular, we show that irregular firing results from square-wave bursting through a fast-slow analysis. Furthermore, we demonstrate that irregular firing is frequently observed in VIP cells because of the interaction between strong adaptation and a slowly inactivating K+ channel. At last, we reveal that the VIP and α7 cell models resonant with alpha/theta band input through a dynamic gain analysis.SIGNIFICANCE STATEMENT In the neocortex, ∼25% of neurons are interneurons. Interestingly, only somas of interneurons reside within layer 1 (L1) of the neocortex, but not of excitatory pyramidal cells. L1 interneurons are diverse and believed to be important in the cortical-cortex interactions, especially top-down signaling in the cortical hierarchy. However, the electrophysiological features of L1 interneurons are poorly understood. Here, we systematically studied the electrophysiological features within each L1 interneuron subtype. Furthermore, we build computational models for each subtype and study the mechanisms behind these features. These electrophysiological features within each subtype should be incorporated to elucidate how different L1 interneuron subtypes contribute to communication between cortexes.


Asunto(s)
Interneuronas , Neocórtex , Ratones , Animales , Potenciales de Acción/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Neocórtex/fisiología , Péptido Intestinal Vasoactivo/metabolismo
3.
Annu Rev Neurosci ; 44: 221-252, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730511

RESUMEN

Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.


Asunto(s)
Neocórtex , Dendritas , Aprendizaje , Células Piramidales
4.
Nat Neurosci ; 24(3): 401-411, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619404

RESUMEN

Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.1 and are weakly immunoreactive to neuronal nitric oxide synthase. DSA neurons are weakly excited by deep-layer pyramidal cells and strongly inhibited by several other GABAergic cell types. Spiking of DSA neurons modified the sequential firing order of other neurons at down-up transitions. Optogenetic activation of ID2+Nkx2.1+ interneurons in the posterior parietal cortex during NREM sleep, but not during waking, interfered with consolidation of cue discrimination memory. Despite their sparsity, DSA neurons perform critical physiological functions.


Asunto(s)
Potenciales de Acción/fisiología , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Interneuronas/fisiología , Lóbulo Parietal/fisiología , Células Piramidales/fisiología , Sueño/fisiología , Factor Nuclear Tiroideo 1/metabolismo , Animales , Interneuronas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Optogenética , Lóbulo Parietal/metabolismo
6.
Nature ; 586(7828): 262-269, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999462

RESUMEN

Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.


Asunto(s)
Interneuronas/citología , Primates , Animales , Callithrix , Corteza Cerebral/citología , Femenino , Hurones , Hipocampo/citología , Humanos , Interneuronas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Macaca , Masculino , Ratones , Neostriado/citología , Proteínas del Tejido Nervioso/metabolismo , ARN/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo
7.
Neuron ; 104(2): 186-188, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31647892

RESUMEN

In this issue of Neuron, Yu et al. (2019) reveal the activity of excitatory cells and GABAergic inhibitory interneurons throughout the neocortical column during active sensation. The authors utilized a combination of spike waveform analysis and genetic tools to identify cell types, demonstrating their distinct patterns of recruitment during behavior.


Asunto(s)
Corteza Cerebral , Interneuronas , Neuronas
8.
J Neurosci ; 39(1): 125-139, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30413647

RESUMEN

Sensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers. L1 also contains a poorly characterized population of GABAergic interneurons (INs), which regulate the impact that different top-down inputs have on PCs. A poor comprehension of L1 IN subtypes and how they affect PC activity has hampered our understanding of the mechanisms that underlie contextual modulation of sensory processing. We used novel genetic strategies in male and female mice combined with electrophysiological and morphological methods to help resolve differences that were unclear when using only electrophysiological and/or morphological approaches. We discovered that L1 contains four distinct populations of INs, each with a unique molecular profile, morphology, and electrophysiology, including a previously overlooked IN population (named here "canopy cells") representing 40% of L1 INs. In contrast to what is observed in other layers, most L1 neurons appear to be unique to the layer, highlighting the specialized character of the signal processing that takes place in L1. This new understanding of INs in L1, as well as the application of genetic methods based on the markers described here, will enable investigation of the cellular and circuit mechanisms of top-down processing in L1 with unprecedented detail.SIGNIFICANCE STATEMENT Neocortical layer 1 (L1) is the main target of corticocortical and subcortical projections that mediate top-down or context-dependent sensory perception. However, this unique layer is often referred to as "enigmatic" because its neuronal composition has been difficult to determine. Using a combination of genetic, electrophysiological, and morphological approaches that helped to resolve differences that were unclear when using a single approach, we were able to decipher the neuronal composition of L1. We identified markers that distinguish L1 neurons and found that the layer contains four populations of GABAergic interneurons, each with unique molecular profiles, morphologies, and electrophysiological properties. These findings provide a new framework for studying the circuit mechanisms underlying the processing of top-down inputs in neocortical L1.


Asunto(s)
Interneuronas/fisiología , Neocórtex/citología , Neocórtex/fisiología , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Fenómenos Electrofisiológicos/fisiología , Femenino , Interneuronas/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Neocórtex/ultraestructura , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Ácido gamma-Aminobutírico/fisiología
9.
PLoS One ; 8(10): e76877, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130800

RESUMEN

C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (I j ) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The I j deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of I j between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Conexinas/metabolismo , Fenómenos Electrofisiológicos , Músculos/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Conexinas/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Mutación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA