Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO J ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39448883

RESUMEN

Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.

2.
bioRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39253418

RESUMEN

Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.

3.
Nat Struct Mol Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918639

RESUMEN

Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.

4.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865459

RESUMEN

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Asunto(s)
Autofagia , Proteína Sequestosoma-1 , Ubiquitinación , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Proteína Sequestosoma-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Unión Proteica , Agregado de Proteínas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina/metabolismo , Proteínas de Neoplasias
5.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573225

RESUMEN

Autophagy serves as a stress response pathway by mediating the degradation of cellular material within lysosomes. In autophagy, this material is encapsulated in double-membrane vesicles termed autophagosomes, which form from precursors referred to as phagophores. Phagophores grow by lipid influx from the endoplasmic reticulum into Atg9-positive compartments and local lipid synthesis provides lipids for their expansion. How phagophore nucleation and expansion are coordinated with lipid synthesis is unclear. Here, we show that Faa1, an enzyme activating fatty acids, is recruited to Atg9 vesicles by directly binding to negatively charged membranes with a preference for phosphoinositides such as PI3P and PI4P. We define the membrane-binding surface of Faa1 and show that its direct interaction with the membrane is required for its recruitment to phagophores. Furthermore, the physiological localization of Faa1 is key for its efficient catalysis and promotes phagophore expansion. Our results suggest a positive feedback loop coupling phagophore nucleation and expansion to lipid synthesis.


Asunto(s)
Autofagosomas , Ácidos Grasos , Macroautofagia , Autofagia , Ácidos Grasos/metabolismo , Retroalimentación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
6.
EMBO J ; 42(17): e113012, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37409490

RESUMEN

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Esfingomielinas , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Mamíferos
7.
Sci Adv ; 8(50): eadd1436, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516251

RESUMEN

How the highly curved phagophore membrane is stabilized during autophagy initiation is a major open question in autophagosome biogenesis. Here, we use in vitro reconstitution on membrane nanotubes and molecular dynamics simulations to investigate how core autophagy proteins in the LC3 (Microtubule-associated proteins 1A/1B light chain 3) lipidation cascade interact with curved membranes, providing insight into their possible roles in regulating membrane shape during autophagosome biogenesis. ATG12(Autophagy-related 12)-ATG5-ATG16L1 was up to 100-fold enriched on highly curved nanotubes relative to flat membranes. At high surface density, ATG12-ATG5-ATG16L1 binding increased the curvature of the nanotubes. While WIPI2 (WD repeat domain phosphoinositide-interacting protein 2) binding directs membrane recruitment, the amphipathic helix α2 of ATG16L1 is responsible for curvature sensitivity. Molecular dynamics simulations revealed that helix α2 of ATG16L1 inserts shallowly into the membrane, explaining its curvature-sensitive binding to the membrane. These observations show how the binding of the ATG12-ATG5-ATG16L1 complex to the early phagophore rim could stabilize membrane curvature and facilitate autophagosome growth.

8.
J Biol Chem ; 298(2): 101573, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007534

RESUMEN

Autophagy is a lysosomal degradation pathway for the removal of damaged and superfluous cytoplasmic material. This is achieved by the sequestration of this cargo material within double-membrane vesicles termed autophagosomes. Autophagosome formation is mediated by the conserved autophagy machinery. In selective autophagy, this machinery including the transmembrane protein Atg9 is recruited to specific cargo material via cargo receptors and the Atg11/FIP200 scaffold protein. The molecular details of the interaction between Atg11 and Atg9 are unclear, and it is still unknown how the recruitment of Atg9 is regulated. Here we employ NMR spectroscopy of the N-terminal disordered domain of Atg9 (Atg9-NTD) to map its interaction with Atg11 revealing that it involves two short peptides both containing a PLF motif. We show that the Atg9-NTD binds to Atg11 with an affinity of about 1 µM and that both PLF motifs contribute to the interaction. Mutation of the PLF motifs abolishes the interaction of the Atg9-NTD with Atg11, reduces the recruitment of Atg9 to the precursor aminopeptidase 1 (prApe1) cargo, and blocks prApe1 transport into the vacuole by the selective autophagy-like cytoplasm-to-vacuole (Cvt) targeting pathway while not affecting bulk autophagy. Our results provide mechanistic insights into the interaction of the Atg11 scaffold with the Atg9 transmembrane protein in selective autophagy and suggest a model where only clustered Atg11 when bound to the prApe1 cargo is able to efficiently recruit Atg9 vesicles.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Aminopeptidasas/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Citoplasma/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Nat Commun ; 12(1): 5212, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471133

RESUMEN

The autophagic degradation of misfolded and ubiquitinated proteins is important for cellular homeostasis. In this process, which is governed by cargo receptors, ubiquitinated proteins are condensed into larger structures and subsequently become targets for the autophagy machinery. Here we employ in vitro reconstitution and cell biology to define the roles of the human cargo receptors p62/SQSTM1, NBR1 and TAX1BP1 in the selective autophagy of ubiquitinated substrates. We show that p62 is the major driver of ubiquitin condensate formation. NBR1 promotes condensate formation by equipping the p62-NBR1 heterooligomeric complex with a high-affinity UBA domain. Additionally, NBR1 recruits TAX1BP1 to the ubiquitin condensates formed by p62. While all three receptors interact with FIP200, TAX1BP1 is the main driver of FIP200 recruitment and thus the autophagic degradation of p62-ubiquitin condensates. In summary, our study defines the roles of all three receptors in the selective autophagy of ubiquitin condensates.


Asunto(s)
Autofagia/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/genética , Dominios Proteicos , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
10.
Science ; 369(6508)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32883836

RESUMEN

Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagosomas/química , Proteína 12 Relacionada con la Autofagia/química , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Metabolismo de los Lípidos , Proteínas de la Membrana/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Liposomas Unilamelares/metabolismo
11.
Autophagy ; 15(8): 1475-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31066340

RESUMEN

Macroautophagy/autophagy mediates the degradation of ubiquitinated aggregated proteins within lysosomes in a process known as aggrephagy. The cargo receptor SQSTM1/p62 condenses aggregated proteins into larger structures and links them to the nascent autophagosomal membrane (phagophore). How the condensation reaction and autophagosome formation are coupled is unclear. We recently discovered that a region of SQSTM1 containing its LIR motif directly interacts with RB1CC1/FIP200, a protein acting at early stages of autophagosome formation. Determination of the structure of the C-terminal region of RB1CC1 revealed a claw-shaped domain. Using a structure-function approach, we show that the interaction of SQSTM1 with the RB1CC1 claw domain is crucial for the productive recruitment of the autophagy machinery to ubiquitin-positive condensates and their subsequent degradation by autophagy. We also found that concentrated Atg8-family proteins on the phagophore displace RB1CC1 from SQSTM1, suggesting an intrinsic directionality in the process of autophagosome formation. Ultimately, our study reveals how the interplay of SQSTM1 and RB1CC1 couples cargo condensation to autophagosome formation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteína Sequestosoma-1/metabolismo , Ubiquitina/metabolismo , Animales , Autofagosomas/metabolismo , Humanos , Modelos Biológicos , Unión Proteica
12.
Mol Cell ; 74(2): 330-346.e11, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853400

RESUMEN

The autophagy cargo receptor p62 facilitates the condensation of misfolded, ubiquitin-positive proteins and their degradation by autophagy, but the molecular mechanism of p62 signaling to the core autophagy machinery is unclear. Here, we show that disordered residues 326-380 of p62 directly interact with the C-terminal region (CTR) of FIP200. Crystal structure determination shows that the FIP200 CTR contains a dimeric globular domain that we designated the "Claw" for its shape. The interaction of p62 with FIP200 is mediated by a positively charged pocket in the Claw, enhanced by p62 phosphorylation, mutually exclusive with the binding of p62 to LC3B, and it promotes degradation of ubiquitinated cargo by autophagy. Furthermore, the recruitment of the FIP200 CTR slows the phase separation of ubiquitinated proteins by p62 in a reconstituted system. Our data provide the molecular basis for a crosstalk between cargo condensation and autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Conformación Proteica , Proteínas Tirosina Quinasas/química , Proteína Sequestosoma-1/química , Autofagosomas/química , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Cristalografía por Rayos X , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Mapas de Interacción de Proteínas/genética , Proteínas Tirosina Quinasas/genética , Proteolisis , Proteína Sequestosoma-1/genética , Transducción de Señal/genética , Ubiquitina/química , Ubiquitina/genética
13.
J Cell Biol ; 217(10): 3656-3669, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30097514

RESUMEN

Autophagy mediates the bulk degradation of cytoplasmic material, particularly during starvation. Upon the induction of autophagy, autophagosomes form a sealed membrane around cargo, fuse with a lytic compartment, and release the cargo for degradation. The mechanism of autophagosome-vacuole fusion is poorly understood, although factors that mediate other cellular fusion events have been implicated. In this study, we developed an in vitro reconstitution assay that enables systematic discovery and dissection of the players involved in autophagosome-vacuole fusion. We found that this process requires the Atg14-Vps34 complex to generate PI3P and thus recruit the Ypt7 module to autophagosomes. The HOPS-tethering complex, recruited by Ypt7, is required to prepare SNARE proteins for fusion. Furthermore, we discovered that fusion requires the R-SNARE Ykt6 on the autophagosome, together with the Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. These findings shed new light on the mechanism of autophagosome-vacuole fusion and reveal that the R-SNARE Ykt6 is required for this process.


Asunto(s)
Autofagosomas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fusión de Membrana , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Vacuolas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
14.
Nat Commun ; 8(1): 295, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821724

RESUMEN

The biogenesis of autophagosomes depends on the conjugation of Atg8-like proteins with phosphatidylethanolamine. Atg8 processing by the cysteine protease Atg4 is required for its covalent linkage to phosphatidylethanolamine, but it is also necessary for Atg8 deconjugation from this lipid to release it from membranes. How these two cleavage steps are coordinated is unknown. Here we show that phosphorylation by Atg1 inhibits Atg4 function, an event that appears to exclusively occur at the site of autophagosome biogenesis. These results are consistent with a model where the Atg8-phosphatidylethanolamine pool essential for autophagosome formation is protected at least in part by Atg4 phosphorylation by Atg1 while newly synthesized cytoplasmic Atg8 remains susceptible to constitutive Atg4 processing.The protease Atg4 mediates Atg8 lipidation, required for autophagosome biogenesis, but also triggers Atg8 release from the membranes, however is unclear how these steps are coordinated. Here the authors show that phosphorylation by Atg1 inhibits Atg4 at autophagosome formation sites.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Western Blotting , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Fosfatidiletanolaminas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
EMBO Rep ; 18(5): 765-780, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28330855

RESUMEN

Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3-interacting region (LIR) at the C-terminus of the protein and a novel motif at the N-terminus. Although both sites are important for Atg4-Atg8 interaction in vivo, only the new N-terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE-bound Atg8.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Membranas/química , Membranas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Fagosomas/metabolismo , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Mol Cell ; 64(2): 221-235, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768871

RESUMEN

Autophagy is a potent cellular degradation pathway, and its activation needs to be tightly controlled. Cargo receptors mediate selectivity during autophagy by bringing cargo to the scaffold protein Atg11 and, in turn, to the autophagic machinery, including the central autophagy kinase Atg1. Here we show how selective autophagy is tightly regulated in space and time to prevent aberrant Atg1 kinase activation and autophagy induction. We established an induced bypass approach (iPass) that combines genetic deletion with chemically induced dimerization to evaluate the roles of Atg13 and cargo receptors in Atg1 kinase activation and selective autophagy progression. We show that Atg1 activation does not require cargo receptors, cargo-bound Atg11, or Atg13 per se. Rather, these proteins function in two independent pathways that converge to activate Atg1 at the vacuole. This pathway architecture underlies the spatiotemporal control of Atg1 kinase activity, thereby preventing inappropriate autophagosome formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fagosomas/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
Yeast ; 32(3): 355-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25582094

RESUMEN

Methylation tracking (M-Track) is a protein-proximity assay in Saccharomyces cerevisiae, allowing the detection of transient protein-protein interactions in living cells. The bait protein is fused to a histone lysine methyl transferase and the prey protein to a methylation acceptor peptide derived from histone 3. Upon interaction, the histone 3 fragment is stably methylated on lysine 9 and can be detected by methylation-specific antibodies. Since methylation marking is irreversible in budding yeast and only takes place in living cells, the occurrence of artifacts during cell lysate preparation is greatly reduced, leading to a more accurate representation of native interactions. So far, this method has been limited to highly abundant or overexpressed proteins. However, many proteins of interest are low-abundant, and overexpression of proteins may interfere with their function, leading to an artificial situation. Here we report the generation of a toolbox including a novel cleavage-enrichment system for the analysis of very low-abundant proteins at their native expression levels. In addition, we developed a system for the parallel analysis of two prey proteins in a single cell, as well as an inducible methylation system. The inducible system allows precise control over the time during which the interaction is detected and can be used to determine interaction kinetics. Furthermore, we generated a set of constructs facilitating the cloning-free genomic tagging of proteins at their endogenous locus by homologous recombination, and their expression from centromeric plasmids.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
EMBO Rep ; 15(8): 862-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24968893

RESUMEN

Autophagy is the major pathway for the delivery of cytoplasmic material to the vacuole or lysosome. Selective autophagy is mediated by cargo receptors, which link the cargo to the scaffold protein Atg11 and to Atg8 family proteins on the forming autophagosomal membrane. We show that the essential kinase Hrr25 activates the cargo receptor Atg19 by phosphorylation, which is required to link cargo to the Atg11 scaffold, allowing selective autophagy to proceed. We also find that the Atg34 cargo receptor is regulated in a similar manner, suggesting a conserved mechanism.


Asunto(s)
Quinasa de la Caseína I/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Autofagia , Proteínas Relacionadas con la Autofagia , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Receptores de Superficie Celular/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
19.
Mol Cell ; 53(3): 471-83, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24440502

RESUMEN

Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Secuencia de Aminoácidos , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Secuencia de Consenso , Membranas Intracelulares/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Fagosomas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA