Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Blood Adv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954834

RESUMEN

The leukemic stem cell (LSC) score LSC-17 based on a stemness-related gene expression signature is an indicator of poor disease outcome in acute myeloid leukemia (AML). However, our understanding of the relationships between LSC and pre-leukemic cells is still incomplete. In particular, it is not known whether "niche-anchoring" of pre-leukemic cell affects disease evolution. To address this issue, we conditionally inactivated the adhesion molecule JAM-C expressed by haematopoietic stem cells (HSC) and LSC in an inducible iMLL-AF9-driven AML mouse model. Deletion of Jam3 (encoding JAM-C) before induction of the leukemia-initiating iMLL-AF9 fusion resulted in a shift from long term to short term-HSC expansion, without affecting disease initiation and progression. In vitro experiments showed that JAM-C controlled leukemic cell nesting irrespective of the bone marrow stromal cells used. RNA sequencing performed on leukemic HSC isolated from diseased mice revealed that genes upregulated in Jam3-deficient animals belonged to Activation Protein-1 (AP-1) and TNF-/NFB pathways. Human orthologs of dysregulated genes allowed to identify a score based on AP-1/TNF-a gene expression that was distinct and complementary from LSC-17 score. Sub-stratification of AML patients with LSC-17 and AP-1/TNF-genes signature defined four groups with median survival ranging from below one year to a median not reached after 8 years. Finally, coculture experiments showed that AP-1 activation in leukemic cells was dependent on the nature of stromal cells. Altogether, our results identify the AP-1/TNF- gene signature as a proxy of LSC anchoring in specific bone marrow niches which improves the prognosis value of the LSC-17 score. NCT02320656.

2.
Hemasphere ; 8(6): e90, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38903535

RESUMEN

Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.

4.
Nat Cancer ; 5(6): 916-937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637657

RESUMEN

Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.


Asunto(s)
Progresión de la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Leucemia Mieloide Aguda , Inhibidores de Prolil-Hidroxilasa , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Animales , Ratones , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estabilidad Proteica/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes
5.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363677

RESUMEN

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Asunto(s)
Leucemia Mieloide Aguda , Células Th17 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Proliferación Celular , Factor de Crecimiento Transformador beta , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
7.
Nucleic Acids Res ; 52(D1): D1138-D1142, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933860

RESUMEN

BloodSpot is a specialised database integrating gene expression data from acute myeloid leukaemia (AML) patients related to blood cell development and maturation. The database and interface has helped numerous researchers and clinicians to quickly get an overview of gene expression patterns in healthy and malignant haematopoiesis. Here, we present an update to our framework that includes protein expression data of sorted single cells. With this update we also introduce datasets broadly spanning age groups, which many users have requested, with particular interest for researchers studying paediatric leukaemias. The backend of the database has been rewritten and migrated to a cloud-based environment to accommodate the growth, and provide a better user-experience for our many international users. Users can now enjoy faster transfer speeds and a more responsive interface. In conclusion, the continuing popularity of the database and emergence of new data modalities has prompted us to rewrite and futureproof the back-end, including paediatric centric views, as well as single cell protein data, allowing us to keep the database updated and relevant for the years to come. The database is freely available at www.bloodspot.eu.


Asunto(s)
Hematopoyesis , Leucemia Mieloide Aguda , Niño , Humanos , Células Sanguíneas , Diferenciación Celular , Bases de Datos Genéticas , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Proteínas/genética
8.
Mol Cancer ; 22(1): 196, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049829

RESUMEN

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Humanos , Ratones , Animales , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción/genética , Mutación , Expresión Génica
9.
Hemasphere ; 7(7): e923, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37388925

RESUMEN

Recent studies have suggested that several oncogenic and tumor-suppressive proteins carry out their functions in the context of specific membrane-less cellular compartments. As these compartments, generally referred to as onco-condensates, are specific to tumor cells and are tightly linked to disease development, the mechanisms of their formation and maintenance have been intensively studied. Here we review the proposed leukemogenic and tumor-suppressive activities of nuclear biomolecular condensates in acute myeloid leukemia (AML). We focus on condensates formed by oncogenic fusion proteins including nucleoporin 98 (NUP98), mixed-lineage leukemia 1 (MLL1, also known as KMT2A), mutated nucleophosmin (NPM1c) and others. We also discuss how altered condensate formation contributes to malignant transformation of hematopoietic cells, as described for promyelocytic leukemia protein (PML) in PML::RARA-driven acute promyelocytic leukemia (APL) and other myeloid malignancies. Finally, we discuss potential strategies for interfering with the molecular mechanisms related to AML-associated biomolecular condensates, as well as current limitations of the field.

10.
Mol Cancer Res ; 21(8): 768-778, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171980

RESUMEN

Certain arylsulfonamides (ArSulfs) induce an interaction between the E3 ligase substrate adaptor DCAF15 and the critical splicing factor RBM39, ultimately causing its degradation. However, degradation of a splicing factor introduces complex pleiotropic effects that are difficult to untangle, since, aside from direct protein degradation, downstream transcriptional effects also influence the proteome. By overlaying transcriptional data and proteome datasets, we distinguish transcriptional from direct degradation effects, pinpointing those proteins most impacted by splicing changes. Using our workflow, we identify and validate the upregulation of the argininie-and-serine rich protein (RSRP1) and the downregulation of the key kinesin motor proteins KIF20A and KIF20B due to altered splicing in the absence of RBM39. We further show that kinesin downregulation is connected to the multinucleation phenotype observed upon RBM39 depletion by ArSulfs. Our approach should be helpful in the assessment of potential cancer drug candidates which target splicing factors. Implications: Our approach provides a workflow for identifying and studying the most strongly modulated proteins when splicing is altered; the work also uncovers a splicing-based approach toward pharmacological targeting of mitotic kinesins.

11.
Blood ; 141(18): 2245-2260, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36735909

RESUMEN

The NFIA-ETO2 fusion is the product of a t(1;16)(p31;q24) chromosomal translocation, so far, exclusively found in pediatric patients with pure erythroid leukemia (PEL). To address the role for the pathogenesis of the disease, we facilitated the expression of the NFIA-ETO2 fusion in murine erythroblasts (EBs). We observed that NFIA-ETO2 significantly increased proliferation and impaired erythroid differentiation of murine erythroleukemia cells and of primary fetal liver-derived EBs. However, NFIA-ETO2-expressing EBs acquired neither aberrant in vitro clonogenic activity nor disease-inducing potential upon transplantation into irradiated syngenic mice. In contrast, in the presence of 1 of the most prevalent erythroleukemia-associated mutations, TP53R248Q, expression of NFIA-ETO2 resulted in aberrant clonogenic activity and induced a fully penetrant transplantable PEL-like disease in mice. Molecular studies support that NFIA-ETO2 interferes with erythroid differentiation by preferentially binding and repressing erythroid genes that contain NFI binding sites and/or are decorated by ETO2, resulting in a activity shift from GATA- to ETS-motif-containing target genes. In contrast, TP53R248Q does not affect erythroid differentiation but provides self-renewal and survival potential, mostly via downregulation of known TP53 targets. Collectively, our work indicates that NFIA-ETO2 initiates PEL by suppressing gene expression programs of terminal erythroid differentiation and cooperates with TP53 mutation to induce erythroleukemia.


Asunto(s)
Leucemia Eritroblástica Aguda , Proteínas Represoras , Animales , Ratones , Proteínas Represoras/genética , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Diferenciación Celular/genética , Eritroblastos/metabolismo , Factores de Transcripción NFI/metabolismo
14.
Life (Basel) ; 11(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575025

RESUMEN

Recurrent epigenomic alterations associated with multiple human pathologies have increased the interest in the nuclear receptor binding SET domain protein 1 (NSD1) lysine methyltransferase. Here, we review the current knowledge about the biochemistry, cellular function and role of NSD1 in human diseases. Several studies have shown that NSD1 controls gene expression by methylation of lysine 36 of histone 3 (H3K36me1/2) in a complex crosstalk with de novo DNA methylation. Inactivation in flies and mice revealed that NSD1 is essential for normal development and that it regulates multiple cell type-specific functions by interfering with transcriptional master regulators. In humans, putative loss of function NSD1 mutations characterize developmental syndromes, such as SOTOS, as well as cancer from different organs. In pediatric hematological malignancies, a recurrent chromosomal translocation forms a NUP98-NSD1 fusion with SET-dependent leukemogenic activity, which seems targetable by small molecule inhibitors. To treat or prevent diseases driven by aberrant NSD1 activity, future research will need to pinpoint the mechanistic correlation between the NSD1 gene dosage and/or mutational status with development, homeostasis, and malignant transformation.

15.
Hemasphere ; 5(5): e558, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33898929

RESUMEN

Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.

16.
Mol Cell Oncol ; 7(6): 1809919, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-33235911

RESUMEN

We have uncovered a novel role for the nuclear receptor-binding SET domain protein 1 (NSD1) in human and murine erythroid differentiation. Mechanistically, we found that the histone methyltransferase activity of NSD1 is essential for chromatin binding, protein interactions and target gene activation of the erythroid transcriptional master regulator GATA1.

17.
Cell Metab ; 32(5): 829-843.e9, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32966766

RESUMEN

Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.


Asunto(s)
Antioxidantes/metabolismo , Médula Ósea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Células Cultivadas , Metabolismo Energético , Femenino , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
18.
Nat Commun ; 11(1): 2807, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533074

RESUMEN

The nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1-/- erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1-/- erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1-/- erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis.


Asunto(s)
Diferenciación Celular , Células Eritroides/metabolismo , Células Eritroides/patología , Factor de Transcripción GATA1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patología , Adulto , Animales , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Eritroblastos/metabolismo , Factor de Transcripción GATA1/genética , Regulación Leucémica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hematopoyesis , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Estimación de Kaplan-Meier , Leucemia Eritroblástica Aguda/genética , Masculino , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Transferrina/metabolismo
20.
Blood ; 136(6): 698-714, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32350520

RESUMEN

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Asunto(s)
Leucemia Eritroblástica Aguda/genética , Proteínas de Neoplasias/fisiología , Factores de Transcripción/fisiología , Transcriptoma , Adulto , Animales , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Dioxigenasas , Eritroblastos/metabolismo , Eritropoyesis/genética , Femenino , Factor de Transcripción GATA1/deficiencia , Factor de Transcripción GATA1/genética , Técnicas de Sustitución del Gen , Heterogeneidad Genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , RNA-Seq , Quimera por Radiación , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Factores de Transcripción/genética , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/fisiología , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA