RESUMEN
Traditional protein structure determination by magic angle spinning (MAS) solid-state NMR spectroscopy primarily relies on interatomic distances up to 8 Å, extracted from 13C-, 15N-, and 1H-based dipolar-based correlation experiments. Here, we show that 19F fast (60 kHz) MAS NMR spectroscopy can supply additional, longer distances. Using 4F-Trp,U-13C,15N crystalline Oscillatoria agardhii agglutinin (OAA), we demonstrate that judiciously designed 2D and 3D 19F-based dipolar correlation experiments such as (H)CF, (H)CHF, and FF can yield interatomic distances in the 8-16 Å range. Incorporation of fluorine-based restraints into structure calculation improved the precision of Trp side chain conformations as well as regions in the protein around the fluorine containing residues, with notable improvements observed for residues in proximity to the Trp pairs (W10/W17 and W77/W84) in the carbohydrate-binding loops, which lacked sufficient long-range 13C-13C distance restraints. Our work highlights the use of fluorine and 19F fast MAS NMR spectroscopy as a powerful structural biology tool.
RESUMEN
T-cell therapies based on chimeric antigen receptor (CAR) targeting of a tumor-specific antigen offer hope for patients with relapsed or refractory cancers. CAR hinge and transmembrane regions link antigen recognition domains to intracellular signal transduction domains. Here, we apply biophysical methods to characterize the structure and dynamic properties of the CD28 CAR hinge (CD28H) used in an FDA-approved CD19 CAR for the treatment of B-lineage leukemia/lymphoma. By using nuclear Overhauser effect spectroscopy (NOESY), which detects even transiently occupied structural motifs, we observed otherwise elusive local structural elements amidst overall disorder in CD28H, including a conformational switch from a native ß-strand to a 310-helix and polyproline II helix-like structure. These local structural motifs contribute to an overall loosely formed extended geometry that could be captured by NOESY data. All FDA-approved CARs use prolines in the hinge region, which we find in CD28, and previously in CD8α, isomerize to promote structural plasticity and dynamics. These local structural elements may function in recognition and signaling events and constrain the spacing between the transmembrane and antigen recognition domains. Our study thus demonstrates a method for detecting local and transient structure within intrinsically disordered systems and moreover, our CD28H findings may inform future CAR design.
Asunto(s)
Antígenos CD28 , Receptores Quiméricos de Antígenos , Antígenos CD28/inmunología , Antígenos CD28/química , Antígenos CD28/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/química , Humanos , Conformación Proteica , Linfocitos T/inmunología , Linfocitos T/metabolismo , Modelos MolecularesRESUMEN
The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed translocation of AcpP-tethered acyl chains into the active sites of enzymes. The mechanistic underpinnings of this conformational interplay, termed chain-flipping, are unclear. Here, using heteronuclear NMR spectroscopy, we reveal that AcpP-tethered acyl chains (6-10 carbons) spontaneously adopt lowly populated solvent-exposed conformations. To this end, we devised a new strategy to replace AcpP's thioester linkages with 15N-labeled amide bonds, which facilitated direct "visualization" of these excited states using NMR chemical exchange saturation transfer and relaxation dispersion measurements. Global fitting of the corresponding data yielded kinetic rate constants of the underlying equilibrium and populations and lifetimes of solvent-exposed states. The latter were influenced by acyl chain composition and ranged from milliseconds to submilliseconds for chains containing six, eight, and ten carbons, owing to their variable interactions with AcpP's hydrophobic core. Although transient, the exposure of AcpP-tethered acyl chains to the solvent may allow relevant enzymes to gain access to its active thioester, and the enzyme-induced selection of this conformation will culminate in the production of fatty acids.
Asunto(s)
Proteína Transportadora de Acilo , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/química , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Acido Graso Sintasa Tipo IIRESUMEN
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.
Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Microscopía por Crioelectrón , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patologíaRESUMEN
The present work describes an update to the protein covalent geometry and atomic radii parameters in the Xplor-NIH biomolecular structure determination package. In combination with an improved treatment of selected non-bonded interactions between atoms three bonds apart, such as those involving methyl hydrogens, and a previously developed term that affects the system's gyration volume, the new parameters are tested using structure calculations on 30 proteins with restraints derived from nuclear magnetic resonance data. Using modern structure validation criteria, including several formally adopted by the Protein Data Bank, and a clear measure of structural accuracy, the results show superior performance relative to previous Xplor-NIH implementations. Additionally, the Xplor-NIH structures compare favorably against originally determined NMR models.
Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación ProteicaRESUMEN
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Programas InformáticosRESUMEN
Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.
Asunto(s)
Glicoproteínas de Membrana , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Glicoproteínas de Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ubiquitina/metabolismo , Citoplasma/metabolismo , Factores de TranscripciónRESUMEN
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
RESUMEN
Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.
Asunto(s)
Antifúngicos , Riñón , Polienos , Esteroles , Animales , Humanos , Ratones , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidad , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antifúngicos/toxicidad , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistencia Fúngica , Ergosterol/química , Ergosterol/metabolismo , Riñón/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología , Polienos/química , Polienos/metabolismo , Polienos/farmacología , Pase Seriado , Esteroles/química , Esteroles/metabolismo , Factores de TiempoRESUMEN
The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.
RESUMEN
Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.
Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sitios de Unión , Proteínas ras/metabolismo , Conformación Proteica , Espectroscopía de Resonancia MagnéticaRESUMEN
G protein-coupled receptors (GPCR) activate numerous intracellular signaling pathways. The oligomerization properties of GPCRs, and hence their cellular functions, may be modulated by various components within the cell membrane (such as the presence of cholesterol). Modulation may occur directly via specific interaction with the GPCR or indirectly by affecting the physical properties of the membrane. Here, we use pulsed Q-band double electron-electron resonance (DEER) spectroscopy to probe distances between R1 nitroxide spin labels attached to Cys163 and Cys344 of the ß1-adrenergic receptor (ß1AR) in n-dodecyl-ß-D-maltoside micelles upon titration with two soluble cholesterol analogs, cholesteryl hemisuccinate (CHS) and sodium cholate. The former, like cholesterol, inserts itself into the lipid membrane, parallel to the phospholipid chains; the latter is aligned parallel to the surface of membranes. Global quantitative analysis of DEER echo curves upon titration of spin-labeled ß1AR with CHS and sodium cholate reveal the following: CHS binds specifically to the ß1AR monomer at a site close to the Cys163-R1 spin label with an equilibrium dissociation constant [Formula: see text] ~1.4 ± 0.4 mM. While no direct binding of sodium cholate to the ß1AR receptor was observed by DEER, sodium cholate induces specific ß1AR dimerization ([Formula: see text] ~35 ± 6 mM and a Hill coefficient n ~ 2.5 ± 0.4) with intersubunit contacts between transmembrane helices 1 and 2 and helix 8. Analysis of the DEER data obtained upon the addition of CHS to the ß1AR dimer in the presence of excess cholate results in dimer dissociation with species occupancies as predicted from the individual KD values.
Asunto(s)
Colato de Sodio , Esteroles , Espectroscopía de Resonancia por Spin del Electrón , Receptores Acoplados a Proteínas G , Colesterol/química , Marcadores de Spin , Receptores AdrenérgicosRESUMEN
RNA flexibility is reflected in its heterogeneous conformation. Through direct visualization using atomic force microscopy (AFM) and the adenosylcobalamin riboswitch aptamer domain as an example, we show that a single RNA sequence folds into conformationally and architecturally heterogeneous structures under near-physiological solution conditions. Recapitulated 3D topological structures from AFM molecular surfaces reveal that all conformers share the same secondary structural elements. Only a population-weighted cohort, not any single conformer, including the crystal structure, can account for the ensemble behaviors observed by small-angle X-ray scattering (SAXS). All conformers except one are functionally active in terms of ligand binding. Our findings provide direct visual evidence that the sequence-structure relationship of RNA under physiologically relevant solution conditions is more complex than the one-to-one relationship for well-structured proteins. The direct visualization of conformational and architectural ensembles at the single-molecule level in solution may suggest new approaches to RNA structural analyses.
Asunto(s)
Proteínas , ARN , Humanos , ARN/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas/química , Conformación de Ácido NucleicoRESUMEN
The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.
Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas de Ciclo Celular , Lípidos , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espectroscopía de Resonancia Magnética , Bacterias/citología , División CelularRESUMEN
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.
RESUMEN
Solvent paramagnetic relaxation enhancement (sPRE) arising from nitroxide-based cosolutes has recently been used to provide an atomic view of cosolute-induced protein denaturation and to characterize residue-specific effective near-surface electrostatic potentials (ÏENS). Here, we explore distinct properties of the sPRE arising from nitroxide-based cosolutes and provide new insights into the interpretation of the sPRE and sPRE-derived ÏENS. We show that: (a) the longitudinal sPRE rate Γ1 is heavily dependent on spectrometer field and viscosity, while the transverse sPRE rate Γ2 is much less so; (b) the spectral density J(0) is proportional to the inverse of the relative translational diffusion constant and is related to the quantity ⟨r-4⟩norm, a concentration-normalized equilibrium average of the electron-proton interspin separation; and (c) attractive intermolecular interactions result in a shortening of the residue-specific effective correlation time for the electron-proton vector. We discuss four different approaches for evaluating ÏENS based on Γ2, J(0), Γ1, or ⟨r-6⟩norm. The latter is evaluated from the magnetic field dependence of Γ1 in conjunction with Γ2. Long-range interactions dominate J(0) and Γ2, while, at high magnetic fields, the contribution of short-range interactions becomes significant for J(ω) and hence Γ1; the four ÏENS quantities enable one to probe both long- and short-range electrostatic interactions. The experimental ÏENS potentials were evaluated using three model protein systems, two folded (ubiquitin and native drkN SH3) and one intrinsically disordered (unfolded state of drkN SH3), in relation to theoretical ÏENS potentials calculated from atomic coordinates using the Poisson-Boltzmann theory with either a r-6 or r-4 dependence.
Asunto(s)
Óxidos de Nitrógeno , Protones , Electricidad Estática , Desnaturalización Proteica , SolventesRESUMEN
Linker histone H1, facilitated by its chaperones, plays an essential role in regulating gene expression by maintaining chromatin's higher-order structure and epigenetic state. However, we know little about the structural mechanism of how the chaperones recognize linker histones and conduct their function. Here, we used biophysical and biochemical methods to investigate the recognition of human linker histone isoform H1.10 by the TAF-Iß chaperone. Both H1.10 and TAF-Iß proteins consist of folded cores and disordered tails. We found that H1.10 formed a complex with TAF-Iß in a 2:2 stoichiometry. Using distance restraints obtained from methyl-TROSY NMR and spin labels, we built a structural model for the core region of the complex. In the model, the TAF-Iß core interacts with the globular domain of H1.10 mainly through electrostatic interactions. We confirmed the interactions by measuring the effects of mutations on the binding affinity. A comparison of our structural model with the chromatosome structure shows that TAF-Iß blocks the DNA binding sites of H1.10. Our study provides insights into the structural mechanism whereby TAF-Iß functions as a chaperone by preventing H1.10 from interacting with DNA directly.
Asunto(s)
Proteínas de Unión al ADN , Chaperonas de Histonas , Histonas , Cromatina/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Unión Proteica , Marcadores de SpinRESUMEN
Calcium-loaded calmodulin (CaM/4Ca2+) comprises two domains that undergo rigid body reorientation from a predominantly extended conformation to a compact one upon binding target peptides. A recent replica-exchange molecular dynamics (MD) simulation on holo CaM/4Ca2+ suggested the existence of distinct structural clusters (substates) along the path from extended to compact conformers in the absence of substrates. Here, we experimentally demonstrate the existence of CaM/4Ca2+ substates trapped in local minima by three freezing/annealing regimes (slow, 40 s; intermediate, 1.5 s; fast, 0.5 ms) using pulsed Q-band double electron-electron resonance (DEER) EPR spectroscopy to measure interdomain distances between nitroxide spin-labels positioned at A17C and A128C in the N- and C-terminal domains, respectively. The DEER echo curves were directly fit to population-optimized P(r) pairwise distance distributions calculated from the coordinates of the MD clusters and compact crystal structure. DEER data on fully deuterated CaM/4Ca2+ were acquired at multiple values of the second echo period (10-35 µs) and analyzed globally to eliminate instrumental and overfitting artifacts and ensure accurate populations, peak positions, and widths. The DEER data for all three freezing regimes are quantitatively accounted for within experimental error by 5-6 distinct conformers comprising a predominantly populated extended form (60-75%) and progressively more compact states whose populations decrease as the degree of compactness increases. The shortest interdomain separation is found in the compact crystal structure, which has an occupancy of 4-6%. Thus, CaM/4Ca2+ samples high energy local minima comprising a few discrete substates of increasing compactness in a rugged energy landscape.
Asunto(s)
Calcio , Calmodulina , Calcio/química , Calmodulina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Electrones , Simulación de Dinámica Molecular , Conformación Proteica , Marcadores de SpinRESUMEN
Paramagnetic NMR experiments, including the pseudocontact shift experiment, have seen increasing use due to recently developed probes and labeling strategies. The pseudocontact shift experiment can provide valuable intra- or inter-molecular distance and orientation information. However, the use of 1H/13C or 1H/15N PCS data in structure calculations is currently complicated by the contribution of residual chemical shift anisotropy to the 13C or 15N datasets. Here, we present a corrected PCS energy term for the software package Xplor-NIH with the appropriate residual chemical shift anisotropy correction and show its suitability for model refinements of ubiquitin labeled at residue 57 with a Tm-M8-SPy tag. For data taken at 800 MHz, the improvement with the corrected energy term is sufficient to make the quality of the fit for the 15N dataset comparable to that of the 1H dataset, for which no correction is needed. The corrected energy term is expected to become more relevant with increased use of higher field instruments and as new paramagnetic probes with larger magnetic susceptibility tensors continue to be developed.
Asunto(s)
Ubiquitina , Anisotropía , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/químicaRESUMEN
Fluorosubstituted tryptophans serve as valuable probes for fluorescence and nuclear magnetic resonance (NMR) studies of proteins. Here, we describe an unusual photoreactivity introduced by replacing the single tryptophan in cyclophilin A with 7-fluoro-tryptophan. UV exposure at 282 nm defluorinates 7-fluoro-tryptophan and crosslinks it to a nearby phenylalanine, generating a bright fluorophore. The crosslink-containing fluorescent protein possesses a large quantum yield of â¼0.40 with a fluorescence lifetime of 2.38 ns. The chemical nature of the crosslink and the three-dimensional protein structure were determined by mass spectrometry and NMR spectroscopy. To the best of our knowledge, this is the first report of a Phe-Trp crosslink in a protein. Our finding may break new ground for developing novel fluorescence probes and for devising new strategies to exploit aromatic crosslinks in proteins.