Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 15: 1396827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855102

RESUMEN

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Asunto(s)
Macrófagos , Mitocondrias , Fagocitosis , Piroptosis , Factores de Transcripción , Animales , Mitocondrias/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunomodulación , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Salmonella typhimurium/inmunología , Escherichia coli/inmunología
2.
Front Biosci (Landmark Ed) ; 29(1): 41, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38287808

RESUMEN

BACKGROUND: The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is an oncofetal protein that is overexpressed in several cancer entities. Employing IMP2 knockout colorectal cancer cells, we could show the important role of IMP2 in several hallmarks of cancer. This study aimed to functionally characterize IMP2 in lung (A549, LLC1) and hepatocellular carcinoma (HepG2, Huh7) cell lines to assess its role as a potential target for these cancer entities. METHODS: IMP2 knockouts were generated by CRISPR/Cas9 and its variant approach prime editing; the editing efficiency of two single guide RNAs (sgRNAs) was verified via next-generation sequencing. We studied the effect of IMP2 knockout on cell proliferation, colony formation, and migration and employed small-molecule inhibitors of IMP2. RESULTS: Despite multiple attempts, it was not possible to generate IMP2 biallelic knockouts in A549 and Huh7 cells. Both sgRNAs showed good editing efficiency. However, edited cells lost their ability to proliferate. The attempt to generate an IMP2 biallelic knockout in LLC1 cells using CRISPR/Cas9 was successful. Monoallelic knockout cell lines of IMP2 showed a reduction in 2D cell proliferation and reduced migration. In 3D cultures, a change in morphology from compact spheroids to loose aggregates and a distinct reduction in the colony formation ability of the IMP2 knockouts was observed, an effect that was mimicked by previously identified IMP2 inhibitor compounds that also showed an inhibitory effect on colony formation. CONCLUSIONS: Our in vitro target validation supports that IMP2 is essential for tumor cell proliferation, migration, and colony formation in several cancer entities.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Proteínas de Unión al ARN , Humanos , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética
3.
Front Oncol ; 12: 872223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646663

RESUMEN

Natural products have been shown to serve as promising starting points for novel anti-cancer drugs. In this study, the anti-cancer activities of the purple compound violacein, initially isolated from Chromobacterium violaceum, were investigated. To highlight the crucial role of the tumor microenvironment on the effectiveness of cancer therapies, this study includes effects on macrophages as prototypic cells of the microenvironment in addition to the investigation of tumor-centric activities. Using 2D and 3D cell culture models, automated live-cell microscopy, and biochemical analyses, violacein was demonstrated to inhibit tumor cell proliferation and migration. The violacein-triggered tumor cell death was further associated with caspase 3-like activation and ATP release. Stimuli released from dead cells resulted in inflammatory activation of macrophages, as shown by NF-κB reporter cell assays, macrophage morphology, and gene expression analysis. Moreover, macrophages deficient in the inflammasome component Nlrp3 were found to be significantly less sensitive towards treatment with violacein and doxorubicin. Taken together, this study provides new insights into the biological activity of violacein against cancer. In addition, the in vitro data suggest immunogenic features of induced cell death, making violacein an interesting candidate for further studies investigating the compound as an inducer of immunogenic cell death.

4.
Adv Sci (Weinh) ; 9(8): e2104372, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038236

RESUMEN

Recently, first insights into the regulation and the role of the RNA-binding protein IMP2 in macrophage activation have been published by Wang et al. This study addresses differences in the regulation of IMP2 between the human and murine system. While the expression of IMP2 in anti-inflammatory macrophages is synchronous in mice and men, IMP2 expression is regulated differently in inflammatory macrophages.


Asunto(s)
Activación de Macrófagos , PPAR gamma , Animales , Humanos , Macrófagos/metabolismo , Ratones , PPAR gamma/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
EBioMedicine ; 72: 103578, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34571364

RESUMEN

BACKGROUND: Based on reports on elevated cholesterol levels in cancer cells, strategies to lower cholesterol synthesis have been suggested as an antitumour strategy. However, cholesterol depletion has also been shown to induce tumour-promoting actions in tumour-associated macrophages (TAMs). METHODS: We performed lipidomic and transcriptomic analyses of human lung cancer material. To assess whether the TAM phenotype is shaped by secreted factors produced by tumour cells, primary human monocyte-derived macrophages were polarized towards a TAM-like phenotype using tumour cell-conditioned medium. FINDINGS: Lipidomic analysis of lung adenocarcinoma (n=29) and adjacent non-tumour tissues (n=22) revealed a significant accumulation of free cholesterol and cholesteryl esters within the tumour tissue. In contrast, cholesterol levels were reduced in TAMs isolated from lung adenocarcinoma tissues when compared with alveolar macrophages (AMs) obtained from adjacent non-tumour tissues. Bulk-RNA-Seq revealed that genes involved in cholesterol biosynthesis and metabolism were downregulated in TAMs, while cholesterol efflux transporters were upregulated. In vitro polarized TAM-like macrophages showed an attenuated lipogenic gene expression signature and exhibited lower cholesterol levels compared with non-polarized macrophages. A genome-wide comparison by bulk RNA-Seq confirmed a high similarity of ex vivo TAMs and in vitro TAM-like macrophages. Modulation of intracellular cholesterol levels by either starving, cholesterol depletion, or efflux transporter inhibition indicated that cholesterol distinctly shapes macrophage gene expression. INTERPRETATION: Our data show an opposite dysregulation of cholesterol homeostasis in tumour tissue vs. TAMs. Polarization of in vitro differentiated macrophages by tumour cell-conditioned medium recapitulates key features of ex vivo TAMs. FUNDING: Deutsche Forschungsgemeinschaft (DFG), Landesforschungsf €orderungsprogramm Saarland (LFPP).


Asunto(s)
Colesterol/genética , Homeostasis/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Macrófagos Asociados a Tumores/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Expresión Génica/genética , Humanos , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA