Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Mol Biosci ; 11: 1388846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562555

RESUMEN

[This corrects the article DOI: 10.3389/fmolb.2023.1325284.].

2.
Dis Model Mech ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616731

RESUMEN

Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a ß-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in ß-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant ß-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and ß-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-ß-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of ß-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.

3.
Eur J Med Chem ; 269: 116279, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460271

RESUMEN

In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARÉ£ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARÉ£ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARÉ£ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARÉ£ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARÉ£ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARÉ£ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARÉ£ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARÉ£ binding site.


Asunto(s)
Bencenosulfonamidas , Diabetes Mellitus Tipo 2 , Ratas , Animales , Pioglitazona/farmacología , PPAR gamma/metabolismo , Simulación del Acoplamiento Molecular , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología
4.
Biochem Biophys Res Commun ; 703: 149656, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38364681

RESUMEN

Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane ß-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. ß-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with ß-DG, HEK-293 cells were transiently transfected with a plasmid carrying the ß-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing ß-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for ß-DG binding. A series of already known ß-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel ß-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with ß-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires ß-DG for a proper nuclear localization. These results expand the role of ß-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.


Asunto(s)
Distroglicanos , Distrofias Musculares , Humanos , Distroglicanos/química , Células HEK293 , Proteómica , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismo
5.
Front Mol Biosci ; 10: 1325284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155958

RESUMEN

Dystroglycan (DG) is a transmembrane protein widely expressed in multiple cells and tissues. It is formed by two subunits, α- and ß-DG, and represents a molecular bridge between the outside and the inside of the cell, which is essential for the mechanical and structural stability of the plasma membrane. The α-subunit is a cell-surface protein that binds to the extracellular matrix (ECM) and is tightly associated with the plasma membrane via a non-covalent interaction with the ß-subunit, which, in turn, is a transmembrane protein that binds to the cytoskeletal actin. DG is a versatile molecule acting not only as a mechanical building block but also as a modulator of outside-inside signaling events. The cytoplasmic domain of ß-DG interacts with different adaptor and cytoskeletal proteins that function as molecular switches for the transmission of ECM signals inside the cells. These interactions can modulate the involvement of DG in different biological processes, ranging from cell growth and survival to differentiation and proliferation/regeneration. Although the molecular events that characterize signaling through the ECM-DG-cytoskeleton axis are still largely unknown, in recent years, a growing list of evidence has started to fill the gaps in our understanding of the role of DG in signal transduction. This mini-review represents an update of recent developments, uncovering the dual role of DG as an adhesion and signaling molecule that might inspire new ideas for the design of novel therapeutic strategies for pathologies such as muscular dystrophy, cardiomyopathy, and cancer, where the DG signaling hub plays important roles.

6.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894956

RESUMEN

Muscle weakness and muscle loss characterize many physio-pathological conditions, including sarcopenia and many forms of muscular dystrophy, which are often also associated with mitochondrial dysfunction. Verbascoside, a phenylethanoid glycoside of plant origin, also named acteoside, has shown strong antioxidant and anti-fatigue activity in different animal models, but the molecular mechanisms underlying these effects are not completely understood. This study aimed to investigate the influence of verbascoside on mitochondrial function and its protective role against H2O2-induced oxidative damage in murine C2C12 myoblasts and myotubes pre-treated with verbascoside for 24 h and exposed to H2O2. We examined the effects of verbascoside on cell viability, intracellular reactive oxygen species (ROS) production and mitochondrial function through high-resolution respirometry. Moreover, we verified whether verbascoside was able to stimulate nuclear factor erythroid 2-related factor (Nrf2) activity through Western blotting and confocal fluorescence microscopy, and to modulate the transcription of its target genes, such as heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), by Real Time PCR. We found that verbascoside (1) improved mitochondrial function by increasing mitochondrial spare respiratory capacity; (2) mitigated the decrease in cell viability induced by H2O2 and reduced ROS levels; (3) promoted the phosphorylation of Nrf2 and its nuclear translocation; (4) increased the transcription levels of HO-1 and, in myoblasts but not in myotubes, those of PGC-1α. These findings contribute to explaining verbascoside's ability to relieve muscular fatigue and could have positive repercussions for the development of therapies aimed at counteracting muscle weakness and mitochondrial dysfunction.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Antioxidantes/metabolismo , Línea Celular , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Methods Mol Biol ; 2578: 237-247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152292

RESUMEN

Phage display is a molecular biology cloning technique that allows the expression of genes of interest along with the phage surface protein. The technique described for the following method used a genomic library for the expression of peptides composed of 12 amino acids, with the objective of selecting peptides which presented specific affinity to the molecules of interest. As a target, purified extracellular vesicles from cell cultures of cells 5637 and RT4 were chosen, which in turn have enormous application and can help to understand the functioning of bladder cancer, allowing the development of new vaccines, drugs, therapies, and diagnoses.


Asunto(s)
Bacteriófagos , Vesículas Extracelulares , Vacunas , Aminoácidos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Vesículas Extracelulares/genética , Proteínas de la Membrana/metabolismo , Biblioteca de Péptidos , Péptidos/química , Tecnología , Vacunas/metabolismo
8.
Carbon N Y ; 194: 34-41, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35313599

RESUMEN

Additive manufacturing has played a crucial role in the COVID-19 global emergency allowing for rapid production of medical devices, indispensable tools for hospitals, or personal protection equipment. However, medical devices, especially in nosocomial environments, represent high touch surfaces prone to viral infection and currently used filaments for 3D printing can't inhibit transmission of virus [1]. Graphene-family materials are capable of reinforcing mechanical, optical and thermal properties of 3D printed constructs. In particular, graphene can adsorb near-infrared light with high efficiency. Here we demonstrate that the addition of graphene nanoplatelets to PLA filaments (PLA-G) allows the creation of 3D-printed devices that can be sterilized by near-infrared light exposure at power density analog to sunlight. This method has been used to kill SARS-CoV-2 viral particles on the surface of 3D printed PLA-G by 3 min of exposure. 3D-printed PLA-G is highly biocompatible and can represent the ideal material for the production of sterilizable personal protective equipment and daily life objects intended for multiple users.

9.
Anticancer Agents Med Chem ; 22(4): 760-774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348634

RESUMEN

Breast Cancer (BC) is a molecular heterogeneous disease and patients with similar clinico-pathological characteristics often display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways and alterations in DNA-repair mechanisms are the main altered features in breast cancer. These cellular processes play significant roles in the emergence of resistance to therapies. The introduction of target therapies and immunotherapy significantly improved the survival of breast cancer patients. The incorporation of novel biomarkers together with the introduction of new therapeutic options may help to overcome treatment resistance. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occurs. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoterapia
10.
Arch Pharm (Weinheim) ; 355(3): e2100399, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34958132

RESUMEN

Aiming to discover new antihyperlipidemic agents, a new set of quinazolinone-fibrate hybrids 9a-r bearing the essential features for peroxisome proliferator-activated receptor-α (PPARα) agonistic activity was synthesized and the structures were confirmed by different spectral data. All the target compounds were screened for their PPARα agonistic activity. Compounds 9o and 9q exhibited potent activity, with EC50 values better than that of fenofibrate by 8.7- and 27-fold, respectively. Molecular docking investigations were performed for all the newly synthesized compounds in the active site of the PPARα receptor to study their interactions and energies in the receptor. Moreover, the antihyperlipidemic and antioxidant activities of compounds 9o and 9q were determined using Triton WR-1339-induced hyperlipidemic rats. Compound 9q exhibited effective hypolipidemic activity in a dose-dependent manner, where it significantly reduced the serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol and increased the level of high-density lipoprotein cholesterol. Furthermore, it possesses a powerful antioxidant profile where it significantly elevated the levels of reduced glutathione as well as the total antioxidant capacity and significantly decreased the malondialdehyde level. The histopathological studies revealed that compound 9q improved the aortic architecture and hepatic steatosis. These findings support that compound 9q could be a promising lead compound for the development of new antihyperlipidemic agents.


Asunto(s)
Hipolipemiantes , PPAR alfa , Animales , Ácidos Fíbricos/química , Hipolipemiantes/farmacología , Simulación del Acoplamiento Molecular , PPAR alfa/agonistas , Quinazolinonas/farmacología , Ratas , Relación Estructura-Actividad
11.
Bioorg Chem ; 115: 105170, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332233

RESUMEN

In the current work, a series of novel 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids (10a-o) and (11a-e) were synthesized and evaluated as new PPARα agonists in order to find new agents with higher activity and fewer side effects. The 2-propanoic acid derivative 10a and the 2-butanoic acid congener 10i showed the best overall PPARα agonistic activity showing Emax% values of 50.80 and 90.55%, respectively, and EC50 values of 8.9 and 25.0 µM, respectively, compared to fenofibric acid with Emax = 100% and EC50 = 23.22 µM, respectively. These two compounds also stimulated carnitine palmitoyltransferase 1A gene transcription in HepG2 cells and PPARα protein expression. Molecular docking simulations were performed for the newly synthesized compounds to study their predicted binding pattern and energies in PPARα active site to rationalize their promising activity. In vivo, compounds 10a and 10i elicited a significant hypolipidemic activity improving the lipid profile in triton WR-1339-induced hyperlipidemic rats, including serum triglycerides, total cholesterol, LDL, HDL and VLDL levels. Compound 10i possessed better anti-hyperlipidemic activity than 10a. At a dose of 200 mg/kg, it demonstrated significantly lower TC, TG, LDL and VLDL levels than that of fenofibrate at the same dose with similar HDL levels. Compounds 10i and 10a possessed atherogenic indices (CRR, AC, AI, CRI-II) like that of fenofibrate. Additionally, a promising antioxidant activity indicated by the increased tissue reduced glutathione and plasma total antioxidant capacity with decreased plasma malondialdehyde levels was demonstrated by compounds 10a and 10i. No histopathological alterations were recorded in the hepatic tissue of compound 10i (200 mg/kg).


Asunto(s)
Antioxidantes/química , Chalconas/química , Diseño de Fármacos , Ácidos Fíbricos/química , Hipolipemiantes/síntesis química , PPAR alfa/agonistas , Animales , Sitios de Unión , Dominio Catalítico , Humanos , Hiperlipidemias/inducido químicamente , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Lípidos/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Simulación del Acoplamiento Molecular , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas , Relación Estructura-Actividad , Activación Transcripcional/efectos de los fármacos
12.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167595

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by pathogenic expansions of the triplet cytosine-adenosine-guanosine (CAG) within the Huntingtin gene. These expansions lead to a prolongation of the poly-glutamine stretch at the N-terminus of Huntingtin causing protein misfolding and aggregation. Huntingtin and its pathological variants are widely expressed, but the central nervous system is mainly affected, as proved by the wide spectrum of neurological symptoms, including behavioral anomalies, cognitive decline and motor disorders. Other hallmarks of HD are loss of body weight and muscle atrophy. This review highlights some key elements that likely provide a major contribution to muscle atrophy, namely, alteration of the transcriptional processes, mitochondrial dysfunction, which is strictly correlated to loss of energy homeostasis, inflammation, apoptosis and defects in the processes responsible for the protein quality control. The improvement of muscular symptoms has proven to slow the disease progression and extend the life span of animal models of HD, underlining the importance of a deep comprehension of the molecular mechanisms driving deterioration of muscular tissue.


Asunto(s)
Enfermedad de Huntington/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Músculos/metabolismo , Agregado de Proteínas/fisiología
13.
Antioxidants (Basel) ; 9(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498245

RESUMEN

The oxidative damage of the retinal pigment epithelium (RPE) is the early event that underlies the pathogenesis of maculopathies. Numerous studies have shown that punicalagin (PUN), a polyphenol present in pomegranate, can protect several cell types from oxidative stress. Our study aims to establish if PUN protects RPE from UV radiation-induced oxidative damage. We used an experimental model which involves the use of a human-RPE cell line (ARPE-19) exposed to UV-A radiation for 1, 3, and 5 hours. ARPE-19 cells were pre-treated with PUN (24 h) followed by UV-A irradiation; controls were treated identically, except for UV-A. Effects of pre-treatment with PUN on cell viability, intracellular reactive oxygen species ROS levels, modulation of Nrf2 and its antioxidant target genes, and finally apoptosis were examined. We found that pre­treatment with PUN: (1) antagonized the decrease in cell viability and reduced high levels of ROS associated with UV-A-induced oxidative stress; (2) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation and upregulating its downstream antioxidant target genes (HO-1 and NQO1); (3) induced an anti-apoptotic effect by decreasing Bax/Bcl-2 ratio. These findings provide the first evidence that PUN can prevent UV-A-induced oxidative damage in RPE, offering itself as a possible antioxidant agent capable of contrasting degenerative eye diseases.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32432094

RESUMEN

Although skeletal muscle can regenerate after injury, in chronic damages or in traumatic injuries its endogenous self-regeneration is impaired. Consequently, tissue engineering approaches are promising tools for improving skeletal muscle cells proliferation and engraftment. In the last decade, graphene and its derivates are being explored as novel biomaterials for scaffolds production for skeletal muscle repair. This review describes 3D graphene-based materials that are currently used to generate complex structures able not only to guide cell alignment and fusion but also to stimulate muscle contraction thanks to their electrical conductivity. Graphene is an allotrope of carbon that has indeed unique mechanical, electrical and surface properties and has been functionalized to interact with a wide range of synthetic and natural polymers resembling native musculoskeletal tissue. More importantly, graphene can stimulate stem cell differentiation and has been studied for cardiac, neuronal, bone, skin, adipose, and cartilage tissue regeneration. Here we recapitulate recent findings on 3D scaffolds for skeletal muscle repairing and give some hints for future research in multifunctional graphene implants.

15.
J Chem Inf Model ; 60(6): 3145-3156, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32356985

RESUMEN

The acetylglucosaminyltransferase-like protein LARGE1 is an enzyme that is responsible for the final steps of the post-translational modifications of dystroglycan (DG), a membrane receptor that links the cytoskeleton with the extracellular matrix in the skeletal muscle and in a variety of other tissues. LARGE1 acts by adding the repeating disaccharide unit [-3Xyl-α1,3GlcAß1-] to the extracellular portion of the DG complex (α-DG); defects in the LARGE1 gene result in an aberrant glycosylation of α-DG and consequent impairment of its binding to laminin, eventually affecting the connection between the cell and the extracellular environment. In the skeletal muscle, this leads to degeneration of the muscular tissue and muscular dystrophy. So far, a few missense mutations have been identified within the LARGE1 protein and linked to congenital muscular dystrophy, and because no structural information is available on this enzyme, our understanding of the molecular mechanisms underlying these pathologies is still very limited. Here, we generated a 3D model structure of the two catalytic domains of LARGE1, combining different molecular modeling approaches. Furthermore, by using molecular dynamics simulations, we analyzed the effect on the structure and stability of the first catalytic domain of the pathological missense mutation S331F that gives rise to a severe form of muscle-eye-brain disease.


Asunto(s)
Distroglicanos , Laminina , N-Acetilglucosaminiltransferasas/química , Animales , Distroglicanos/química , Glicosilación , Laminina/química , Ratones , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional
16.
IEEE Int Conf Rehabil Robot ; 2019: 1049-1054, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374768

RESUMEN

Myoelectric Computer Interfaces (MCIs) are a viable option to promote the recovery of movements following spinal cord injury (SCI), stroke, or other neurological disorders that impair motor functions. We developed and tested a MCI interface with the goal of reducing abnormal muscular activations due to compensatory strategies or undesired co-contraction after SCI. The interface mapped surface electromyographic signals (sEMG) into the movement of a cursor on a computer monitor. First, we aimed to reduce the co-activation of muscles pairs: the activation of two muscles controlled orthogonal directions of the cursor movements. Furthermore, to decrease the undesired concurrent activation of a third muscle, we modulated the visual feedback related to the position of the cursor on the screen based on the activation of this muscle. We tested the interface with six unimpaired and two SCI participants. Participants were able to decrease the activity of the targeted muscle when it was associated with the visual feedback of the cursor, but, interestingly, after training, its activity increased again. As for the SCI participants, one successfully decreased the co-activation of arm muscles, while the other successfully improved the selective activation of leg muscles. This is a first proof of concept that people with SCI can acquire, through the proposed MCI, a greater awareness of their muscular activity, reducing abnormal muscle simultaneous activations.


Asunto(s)
Traumatismos de la Médula Espinal/rehabilitación , Adolescente , Adulto , Electromiografía , Femenino , Humanos , Masculino , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Interfaz Usuario-Computador , Adulto Joven
17.
PLoS One ; 13(2): e0192651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447293

RESUMEN

Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and ß-dystroglycan (ß -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of ß -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483-628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621-628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613-651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613-651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor.


Asunto(s)
Distroglicanos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Humanos , Cinética , Ratones , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Termodinámica
18.
Hum Mutat ; 39(2): 266-280, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29134705

RESUMEN

Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane ß-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the ß-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the ß-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy.


Asunto(s)
Distroglicanos/genética , Leucoencefalopatías/genética , Proteínas Mutantes/genética , Síndrome de Walker-Warburg/genética , Línea Celular , Humanos
19.
BMC Res Notes ; 10(1): 601, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157305

RESUMEN

OBJECTIVE: Dystroglycan (DG) is an adhesion complex formed by two subunits, α-DG and ß-DG. In skeletal muscle, DG is part of the dystrophin-glycoprotein complex that is crucial for sarcolemma stability and it is involved in a plethora of muscular dystrophy phenotypes. Due to the important role played by DG in skeletal muscle stability as well as in a wide variety of other tissues including brain and the peripheral nervous system, it is essential to investigate its genetic assembly and transcriptional regulation. RESULTS: Herein, we analyze the effect of the insertion of a floxed neomycin (Neo) cassette within the 3' portion of the universally conserved IG1-intron of the DG gene (Dag1). We analyzed the transcription level of Dag1 and the expression of the DG protein in skeletal muscle of targeted mice compared to wild-type and we did not find any alterations that might be attributed to the gene targeting. However, we found an increase of the cross-sectional areas of tibialis anterior that might have some physiological significance that needs to be assessed in the future. Moreover, in targeted mice the skeletal muscle morphology and its regeneration capacity after injury did not show any evident alterations. We confirmed that the targeting of Dag1 with a floxed Neo-cassette did not produce any gross undesired effects.


Asunto(s)
Distroglicanos/genética , Músculo Esquelético/metabolismo , Mutagénesis Insercional , Neomicina , Animales , Secuencia Conservada , Femenino , Expresión Génica , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
20.
PLoS One ; 12(10): e0186110, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29036200

RESUMEN

Dystroglycan (DG) is a highly glycosylated protein complex that links the cytoskeleton with the extracellular matrix, mediating fundamental physiological functions such as mechanical stability of tissues, matrix organization and cell polarity. A crucial role in the glycosylation of the DG α subunit is played by its own N-terminal region that is required by the glycosyltransferase LARGE. Alteration in this O-glycosylation deeply impairs the high affinity binding to other extracellular matrix proteins such as laminins. Recently, three missense mutations in the gene encoding DG, mapped in the α-DG N-terminal region, were found to be responsible for hypoglycosylated states, causing congenital diseases of different severity referred as primary dystroglycanopaties.To gain insight on the molecular basis of these disorders, we investigated the crystallographic and solution structures of these pathological point mutants, namely V72I, D109N and T190M. Small Angle X-ray Scattering analysis reveals that these mutations affect the structures in solution, altering the distribution between compact and more elongated conformations. These results, supported by biochemical and biophysical assays, point to an altered structural flexibility of the mutant α-DG N-terminal region that may have repercussions on its interaction with LARGE and/or other DG-modifying enzymes, eventually reducing their catalytic efficiency.


Asunto(s)
Distroglicanos/química , Distroglicanos/genética , Mutación Missense , Animales , Cristalografía , Distroglicanos/metabolismo , Estabilidad de Enzimas , Fluorometría , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Desnaturalización Proteica , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA