Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253967

RESUMEN

Freezing air temperatures kill most leaves, yet the leaves of some species can survive these events. Tracking the temporal and spatial dynamics of freezing remains an impediment to characterizing frost tolerance. Here we deploye time-lapse imaging and image subtraction analysis, coupled with fine wire thermocouples, to discern the in situ spatial dynamics of freezing and thawing. Our method of analysis of pixel brightness reveals that ice formation in leaves exposed to natural frosts initiates in mesophyll before spreading to veins, and that while ex situ xylem sap freezes near 0°C, in situ xylem sap has a freezing point of -2°C in our model freezing-resistant species of Lonicera. Photosynthetic rates in leaves that have been exposed to a rapid freeze or thaw do not recover, but leaves exposed to a slow, natural freezing and thawing to -10°C do recover. Using this method, we are able to quantify the spatial formation and timing of freezing events in leaves, and suggest that in situ and ex situ freezing points for xylem sap can differ by more than 4°C depending on the rate of temperature decline.

2.
Plant Cell Environ ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139139

RESUMEN

By regulating carbon uptake and water loss by plants, stomata are not only responsible for productivity but also survival during drought. The timing of the onset of stomatal closure is crucial for preventing excessive water loss during drought, but is poorly explained by plant hydraulics alone and what triggers stomatal closure remains disputed. We investigated whether the hormone abscisic acid (ABA) was this trigger in a highly embolism-resistant tree species Umbellularia californica. We tracked leaf ABA levels, determined the leaf water potential and gravimetric soil water content (gSWC) thresholds for stomatal closure and transpiration decline during a progressive drought. We found that U. californica plants have a peaking-type ABA dynamic, where ABA levels rise early in drought and then decline under prolonged drought conditions. The early increase in ABA levels correlated with the closing of stomata and reduced transpiration. Furthermore, we found that transpiration declined before any large decreases in predawn plant water status and could best be explained by transient drops in midday water potentials triggering increased ABA levels. Our results indicate that ABA-mediated stomatal regulation may be an integral mechanism for reducing transpiration during drought before major drops in bulk soil and plant water status.

3.
New Phytol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096020

RESUMEN

The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration. We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil-plant conductance in the highly embolism-resistant species Callitris tuberculata using continuous dendrometer measurements of leaf water potential during drought. We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil-plant hydraulic pathway and xylem embolism spread. We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.

4.
Plant Divers ; 46(3): 395-405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798723

RESUMEN

Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.

5.
Plant Cell Environ ; 47(8): 2986-2998, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644584

RESUMEN

The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.


Asunto(s)
Hojas de la Planta , Tallos de la Planta , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Xilema/fisiología , Xilema/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Lignina/metabolismo , Combretaceae/fisiología , Combretaceae/crecimiento & desarrollo
6.
Plant Physiol ; 195(1): 370-377, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217870

RESUMEN

Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.


Asunto(s)
Luz , Estomas de Plantas , Presión de Vapor , Estomas de Plantas/fisiología , Magnoliopsida/fisiología , Transpiración de Plantas/fisiología , Helechos/fisiología , Fenómenos Biomecánicos , Epidermis de la Planta/fisiología , Epidermis de la Planta/citología , Marsileaceae/fisiología
7.
Plant Physiol ; 194(2): 732-740, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850913

RESUMEN

Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.


Asunto(s)
Magnoliopsida , Estomas de Plantas , Estomas de Plantas/fisiología , Presión de Vapor , Magnoliopsida/fisiología , Ácido Abscísico/farmacología , Hojas de la Planta/fisiología , Agua , Transpiración de Plantas/fisiología
8.
Microsc Res Tech ; 87(3): 434-445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909218

RESUMEN

The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 µm to 32.50 ± 2.38 µm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.


Asunto(s)
Ajuga , Estomas de Plantas , Estomas de Plantas/ultraestructura , Epidermis de la Planta/ultraestructura , Hojas de la Planta/anatomía & histología , Tricomas/ultraestructura , Microscopía Electrónica de Rastreo , Células Epidérmicas , Epidermis , República de Corea
9.
Plant Cell Environ ; 47(2): 497-510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905689

RESUMEN

The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.


Asunto(s)
Embolia , Magnoliopsida , Tracheophyta , Estomas de Plantas/fisiología , Sequías , Hojas de la Planta/metabolismo , Ácido Abscísico/metabolismo , Agua/metabolismo , Magnoliopsida/fisiología
10.
J Exp Bot ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38155578

RESUMEN

The phytohormone abscisic acid (ABA) plays a major role in closing the stomata of angiosperms. However, recent reports of some angiosperm species having a peaking-type ABA dynamic, in which under extreme drought ABA levels decline to pre-stressed levels, raises the possibility that passive stomatal closure by leaf water status alone can occur in species from this lineage. To test this hypothesis, we conducted instantaneous rehydration experiments in the peaking-type species Umbellularia californica through a long-term drought, in which ABA levels declined to pre-stress levels, yet stomata remain closed. We found that when ABA levels were lowest during extreme drought, stomata of U. californica were passively closed by leaf water status alone, with stomata reopening rapidly to maximum rates of gas exchange on instantaneous rehydration. This contrasts with leaves early in drought, in which ABA levels were highest and stomata did not reopen on instantaneous rehydration. The transition from ABA-driven stomatal closure to passively driven stomatal closure as drought progresses in this species occurs at very low water potentials facilitated by highly embolism-resistant xylem. These results have important implications for understanding stomatal control during drought in angiosperms.

11.
Plant Cell Environ ; 46(11): 3229-3241, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526514

RESUMEN

Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.

12.
Front Plant Sci ; 14: 1140938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008480

RESUMEN

Carbon-water trade-offs in plants are adjusted through stomatal regulation. Stomatal opening enables carbon uptake and plant growth, whereas plants circumvent drought by closing stomata. The specific effects of leaf position and age on stomatal behavior remain largely unknown, especially under edaphic and atmospheric drought. Here, we compared stomatal conductance (gs ) across the canopy of tomato during soil drying. We measured gas exchange, foliage ABA level and soil-plant hydraulics under increasing vapor pressure deficit (VPD). Our results indicate a strong effect of canopy position on stomatal behavior, especially under hydrated soil conditions and relatively low VPD. In wet soil (soil water potential > -50 kPa), upper canopy leaves had the highest gs (0.727 ± 0.154 mol m-2 s-1) and assimilation rate (A; 23.4 ± 3.9 µmol m-2 s-1) compared to the leaves at a medium height of the canopy (gs : 0.159 ± 0.060 mol m2 s-1; A: 15.9 ± 3.8 µmol m-2 s-1). Under increasing VPD (from 1.8 to 2.6 kPa), gs , A and transpiration were initially impacted by leaf position rather than leaf age. However, under high VPD (2.6 kPa), age effect outweighed position effect. The soil-leaf hydraulic conductance was similar in all leaves. Foliage ABA levels increased with rising VPD in mature leaves at medium height (217.56 ± 85 ng g-1 FW) compared to upper canopy leaves (85.36 ± 34 ng g-1 FW). Under soil drought (< -50 kPa), stomata closed in all leaves resulting in no differences in gs across the canopy. We conclude that constant hydraulic supply and ABA dynamics facilitate preferential stomatal behavior and carbon-water trade-offs across the canopy. These findings are fundamental in understanding variations within the canopy, which helps in engineering future crops, especially in the face of climate change.

13.
J Exp Bot ; 74(10): 3255-3266, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36882050

RESUMEN

Senescence vividly marks the onset of the final stages of the life of a leaf, yet the triggers and drivers of this process are still not fully understood. The hormone abscisic acid (ABA) is an important regulator of leaf senescence in model herbs, but the function of this hormone has not been widely tested in deciduous trees. Here we investigate the importance of ABA as a driver of leaf senescence in winter deciduous trees. In four diverse species we tracked leaf gas exchange, water potential, chlorophyll content, and leaf ABA levels from the end of summer until leaves were abscised or died. We found that no change in ABA levels occurred at the onset of chlorophyll decline or throughout the duration of leaf senescence. To test whether ABA could enhance leaf senescence, we girdled branches to disrupt ABA export in the phloem. Girdling increased leaf ABA levels in two of the species, and this increase triggered an accelerated rate of chlorophyll decline in these species. We conclude that an increase in ABA level may augment leaf senescence in winter deciduous species but that it is not essential for this annual process.


Asunto(s)
Ácido Abscísico , Senescencia de la Planta , Clorofila , Hormonas , Hojas de la Planta
14.
Tree Physiol ; 43(6): 879-882, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912493
15.
Plant Physiol ; 191(1): 252-264, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36250901

RESUMEN

The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (-55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (-8%) and lower conduit lumen fraction (-11%), which resulted in a lower specific conductivity (-19%) and leaf-specific conductivity (-34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.


Asunto(s)
Dióxido de Carbono , Árboles , Árboles/fisiología , Dióxido de Carbono/metabolismo , Hojas de la Planta/fisiología , Agua/metabolismo , Suelo
16.
Tree Physiol ; 43(1): 75-87, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36070431

RESUMEN

The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.


Asunto(s)
Embolia , Magnoliopsida , Hojas de la Planta , Xilema , Resistencia a la Sequía , Agua , Sequías
18.
Cancer Imaging ; 22(1): 73, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539908

RESUMEN

Response assessment in the context of immunomodulatory treatments represents a major challenge for the medical imaging community and requires a multidisciplinary approach with involvement of oncologists, radiologists, and nuclear medicine specialists. There is evolving evidence that [18F]FDG PET/CT is a useful diagnostic modality for this purpose. The clinical indications for, and the principal aspects of its standardization in this context have been detailed in the recently published "Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0". These recommendations arose from a fruitful collaboration between international nuclear medicine societies and experts in cancer treatment. In this perspective, the key elements of the initiative are reported, summarizing the core aspects of the guidelines for radiologists and nuclear medicine physicians. Beyond the previous guidelines, this perspective adds further commentary on how this technology can advance development of novel therapeutic approaches and guide management of individual patients.


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Estándares de Referencia , Radiofármacos
19.
Funct Plant Biol ; 49(9): 759-772, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35718950

RESUMEN

Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.


Asunto(s)
Embolia , Agua , Sequías , Microtomografía por Rayos X/métodos , Xilema
20.
Eur J Nucl Med Mol Imaging ; 49(7): 2323-2341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35376991

RESUMEN

PURPOSE: The goal of this guideline/procedure standard is to assist nuclear medicine physicians, other nuclear medicine professionals, oncologists or other medical specialists for recommended use of [18F]FDG PET/CT in oncological patients undergoing immunotherapy, with special focus on response assessment in solid tumors. METHODS: In a cooperative effort between the EANM, the SNMMI and the ANZSNM, clinical indications, recommended imaging procedures and reporting standards have been agreed upon and summarized in this joint guideline/procedure standard. CONCLUSIONS: The field of immuno-oncology is rapidly evolving, and this guideline/procedure standard should not be seen as definitive, but rather as a guidance document standardizing the use and interpretation of [18F]FDG PET/CT during immunotherapy. Local variations to this guideline should be taken into consideration. PREAMBLE: The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association founded in 1985 to facilitate worldwide communication among individuals pursuing clinical and academic excellence in nuclear medicine. The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote science, technology and practical application of nuclear medicine. The Australian and New Zealand Society of Nuclear Medicine (ANZSNM), founded in 1969, represents the major professional society fostering the technical and professional development of nuclear medicine practice across Australia and New Zealand. It promotes excellence in the nuclear medicine profession through education, research and a commitment to the highest professional standards. EANM, SNMMI and ANZSNM members are physicians, technologists, physicists and scientists specialized in the research and clinical practice of nuclear medicine. All three societies will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the EANM/SNMMI/ANZSNM, has undergone a thorough consensus process, entailing extensive review. These societies recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents based on current knowledge. They are not intended to be inflexible rules or requirements of practice, nor should they be used to establish a legal standard of care. For these reasons and those set forth below, the EANM, SNMMI and ANZSNM caution against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals considering the unique circumstances of each case. Thus, there is no implication that an action differing from what is laid out in the guidelines/procedure standards, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines/procedure standards. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/ guidelines will not ensure a successful outcome. All that should be expected is that practitioners follow a reasonable course of action, based on their level of training, current knowledge, clinical practice guidelines, available resources and the needs/context of the patient being treated. The sole purpose of these guidelines is to assist practitioners in achieving this objective. The present guideline/procedure standard was developed collaboratively by the EANM, the SNMMI and the ANZSNM, with the support of international experts in the field. They summarize also the views of the Oncology and Theranostics and the Inflammation and Infection Committees of the EANM, as well as the procedure standards committee of the SNMMI, and reflect recommendations for which the EANM and SNMMI cannot be held responsible. The recommendations should be taken into the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.


Asunto(s)
Neoplasias , Medicina Nuclear , Australia , Fluorodesoxiglucosa F18 , Humanos , Imagen Molecular , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Sociedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA