Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444413

RESUMEN

Cancer cells are especially sensitive to perturbations in ribosome biogenesis as they rely on finely tuned protein homeostasis to facilitate their rapid growth and proliferation. While ribosome synthesis and cancer have a well-established relationship, ribosome biogenesis has only recently drawn interest as a cancer therapeutic target. In this study, we exploited the relationship between ribosome biogenesis and cancer cell proliferation by using a potent ribosome biogenesis inhibitor, RBI2 (Ribosome Biogenesis Inhibitor 2), to perturb cancer cell growth and viability. We demonstrate herein that RBI2 significantly decreases cell viability in malignant melanoma cells and breast cancer cell lines. Treatment with RBI2 dramatically and rapidly decreased ribosomal RNA (rRNA) synthesis, without affecting the occupancy of RNA polymerase I (Pol I) on the ribosomal DNA template. Next-generation RNA sequencing (RNA-seq) revealed that RBI2 and previously described ribosome biogenesis inhibitor CX-5461 induce distinct changes in the transcriptome. An investigation of the content of the pre-rRNAs through RT-qPCR revealed an increase in the polyadenylation of cellular rRNA after treatment with RBI2, constituting a known pathway by which rRNA degradation occurs. Northern blotting revealed that RBI2 does not appear to impair or alter rRNA processing. Collectively, these data suggest that RBI2 inhibits rRNA synthesis differently from other previously described ribosome biogenesis inhibitors, potentially acting through a novel pathway that upregulates the turnover of premature rRNAs.

2.
PLoS One ; 18(5): e0285660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167337

RESUMEN

RNA Polymerase I (Pol I) has recently been recognized as a cancer therapeutic target. The activity of this enzyme is essential for ribosome biogenesis and is universally activated in cancers. The enzymatic activity of this multi-subunit complex resides in its catalytic core composed of RPA194, RPA135, and RPA12, a subunit with functions in RNA cleavage, transcription initiation and elongation. Here we explore whether RPA12 influences the regulation of RPA194 in human cancer cells. We use a specific small-molecule Pol I inhibitor BMH-21 that inhibits transcription initiation, elongation and ultimately activates the degradation of Pol I catalytic subunit RPA194. We show that silencing RPA12 causes alterations in the expression and localization of Pol I subunits RPA194 and RPA135. Furthermore, we find that despite these alterations not only does the Pol I core complex between RPA194 and RPA135 remain intact upon RPA12 knockdown, but the transcription of Pol I and its engagement with chromatin remain unaffected. The BMH-21-mediated degradation of RPA194 was independent of RPA12 suggesting that RPA12 affects the basal expression, but not the drug-inducible turnover of RPA194. These studies add to knowledge defining regulatory factors for the expression of this Pol I catalytic subunit.


Asunto(s)
Cromatina , ARN Polimerasa I , Humanos , Dominio Catalítico , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Neoplasias/genética , Neoplasias/metabolismo
4.
Nano Lett ; 22(15): 6235-6244, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881934

RESUMEN

DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , ADN , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Fotoblanqueo
5.
Biophys J ; 120(10): 1883-1893, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737158

RESUMEN

Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.


Asunto(s)
ARN Polimerasa I , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética
6.
Front Mol Biosci ; 7: 607158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33521053

RESUMEN

Transcriptional riboswitches involve RNA aptamers that are typically found in the 5' untranslated regions (UTRs) of bacterial mRNAs and form alternative secondary structures upon binding to cognate ligands. Alteration of the riboswitch's secondary structure results in perturbations of an adjacent expression platform that controls transcription elongation and termination, thus turning downstream gene expression "on" or "off." Riboswitch ligands are typically small metabolites, divalent cations, anions, signaling molecules, or other RNAs, and can be part of larger signaling cascades. The interconnectedness of ligand binding, RNA folding, RNA transcription, and gene expression empowers riboswitches to integrate cellular processes and environmental conditions across multiple timescales. For a successful response to an environmental cue that may determine a bacterium's chance of survival, a coordinated coupling of timescales from microseconds to minutes must be achieved. This review focuses on recent advances in our understanding of how riboswitches affect such critical gene expression control across time.

7.
J Biol Chem ; 295(5): 1288-1299, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31843971

RESUMEN

The sequence of the DNA template has long been thought to influence the rate of transcription by DNA-dependent RNA polymerases, but the influence of DNA sequence on transcription elongation properties of eukaryotic RNA polymerase I (Pol I) from Saccharomyces cerevisiae has not been defined. In this study, we observe changes in dinucleotide production, transcription elongation complex stability, and Pol I pausing in vitro in response to downstream DNA. In vitro studies demonstrate that AT-rich downstream DNA enhances pausing by Pol I and inhibits Pol I nucleolytic cleavage activity. Analysis of Pol I native elongating transcript sequencing data in Saccharomyces cerevisiae suggests that these downstream sequence elements influence Pol I in vivo Native elongating transcript sequencing studies reveal that Pol I occupancy increases as downstream AT content increases and decreases as downstream GC content increases. Collectively, these data demonstrate that the downstream DNA sequence directly impacts the kinetics of transcription elongation prior to the sequence entering the active site of Pol I both in vivo and in vitro.


Asunto(s)
ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/genética , Elongación de la Transcripción Genética , Secuencia Rica en At/genética , Composición de Base/genética , Secuencia de Bases , ADN de Hongos/química , Mutación , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , División del ARN/genética , ARN Polimerasa I/genética , Saccharomyces cerevisiae/enzimología
8.
Trends Genet ; 35(10): 724-733, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31358304

RESUMEN

Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.


Asunto(s)
ARN Polimerasa I/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Transcripción Genética , Animales , Proliferación Celular , Susceptibilidad a Enfermedades , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transducción de Señal
9.
Biochem J ; 476(15): 2209-2219, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31341008

RESUMEN

Over the past two decades, ribosome biogenesis has emerged as an attractive target for cancer treatment. In this study, two high-throughput screens were used to identify ribosome biogenesis inhibitors. Our primary screen made use of the HaloTag selective labeling strategy to identify compounds that decreased the abundance of newly synthesized ribosomes in A375 malignant melanoma cells. This screen identified 5786 hit compounds. A subset of those initial hit compounds were tested using a secondary screen that directly measured pre-ribosomal RNA (pre-rRNA) abundance as a reporter of rRNA synthesis rate, using quantitative RT-PCR. From the secondary screen, we identified two structurally related compounds that are potent inhibitors of rRNA synthesis. These two compounds, Ribosome Biogenesis Inhibitors 1 and 2 (RBI1 and RBI2), induce a substantial decrease in the viability of A375 cells, comparable to the previously published ribosome biogenesis inhibitor CX-5461. Anchorage-independent cell growth assays further confirmed that RBI2 inhibits cell growth and proliferation. Thus, the RBI compounds have promising properties for further development as potential cancer chemotherapeutics.


Asunto(s)
Antineoplásicos , Benzotiazoles , Naftiridinas , Neoplasias , ARN Neoplásico/biosíntesis , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Benzotiazoles/química , Benzotiazoles/farmacología , Línea Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Naftiridinas/química , Naftiridinas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
10.
Biochemistry ; 58(16): 2116-2124, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30912638

RESUMEN

Eukaryotic cells express at least three nuclear RNA polymerases (Pols), each with a unique set of gene targets. Though these enzymes are homologous, there are many differences among the Pols. In this study, a novel assay for Pol I transcription elongation was developed to probe enzymatic differences among the Pols. In Saccharomyces cerevisiae, a mutation in the universally conserved hinge region of the trigger loop, E1103G, induces a gain of function in the Pol II elongation rate, whereas the corresponding mutation in Pol I, E1224G, results in a loss of function. The E1103G Pol II mutation stabilizes the closed conformation of the trigger loop, promoting the catalytic step, the putative rate-limiting step for Pol II. In single-nucleotide and multinucleotide addition assays, we observe a decrease in the rate of nucleotide addition and dinucleotide cleavage activity by E1224G Pol I and an increase in the rate of misincorporation. Collectively, these data suggest that Pol I is at least in part rate-limited by the same step as Pol II, the catalytic step.


Asunto(s)
Pruebas de Enzimas/métodos , Células Eucariotas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencia de Bases , Biocatálisis , Dominio Catalítico/genética , Células Eucariotas/enzimología , Evolución Molecular , Variación Genética , Mutación Missense , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biophys J ; 114(11): 2507-2515, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874602

RESUMEN

Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.


Asunto(s)
Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa I/metabolismo , Secuencia de Bases , Estabilidad de Enzimas , ARN/genética , ARN/metabolismo , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA