Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4621, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944685

RESUMEN

The cosmopolitan distribution of humpback whales (Megaptera novaeangliae) is largely driven by migrations between winter low-latitude breeding grounds and summer high-latitude feeding grounds. Southern Hemisphere humpback whales faced intensive exploitation during the whaling eras and recently show evidence of population recovery. Gene flow and shared song indicate overlap between the western (A) and eastern (B1, B2) Breeding Stocks in the South Atlantic and Indian Oceans (C1). Here, we investigated photo-identification evidence of population interchange using images of individuals photographed during boat-based tourism and research in Brazil and South Africa from 1989 to 2022. Fluke images were uploaded to Happywhale, a global digital database for marine mammal identification. Six whales were recaptured between countries from 2002 to 2021 with resighting intervals ranging from 0.76 to 12.92 years. Four whales originally photographed off Abrolhos Bank, Brazil were photographed off the Western Cape, South Africa (feeding grounds for B2). Two whales originally photographed off the Western Cape were photographed off Brazil, one traveling to the Eastern Cape in the Southwestern Indian Ocean (a migration corridor for C1) before migrating westward to Brazil. These findings photographically confirm interchange of humpback whales across the South Atlantic and Indian Oceans and the importance of international collaboration to understand population boundaries.


Asunto(s)
Yubarta , Animales , Océano Atlántico , Estaciones del Año , Océano Índico , Brasil
2.
Ecol Evol ; 13(2): e9790, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789339

RESUMEN

Information on resource use and trophic dynamics of marine predators is important for understanding their role in ecosystem functioning and predicting population-level responses to environmental change. Where separate populations experience different local environmental conditions, geographic variability in their foraging ecology is often expected. Within populations, individuals also vary in morphology, physiology, and experience, resulting in specialization in resource use. In this context, isotopic compositions of incrementally grown tissues such as keratinous hairs offer a valuable opportunity to study long-term variation in resource and habitat use. We investigated the trophic ecology of female Cape fur seals (Arctocephalus pusillus pusillus) using carbon and nitrogen isotopic compositions of serially sampled whiskers collected at four breeding sites along the coast of South Africa. Drawing on over 900 isotopic measurements, we assessed geographic variability in isotopic niche width between colonies and the degree of individual specialization. We found slight, but clear geographic differences in isotopic ratios and isotopic niche widths, seemingly related to ecological setting, with niche widths being proportional to the area of available shelf and shelf-slope habitat surrounding the colony. We further identified periodic oscillations in isotopic ratios, which likely reflect temporal patterns in foraging distribution and prey type, linked to shifts in the availability of prey resources and their interaction with constraints on individual females throughout their breeding cycle. Finally, individual specialization indices revealed that each of the study populations contain specialist individuals that utilize only a small subset of the total population niche width. The degree of individual specialization was, however, not consistent across colonies and may reflect an interactive influence between density-dependent effects and habitat heterogeneity. Overall, this study provides important information on the trophic ecology of Cape fur seals breeding in South Africa and highlights the need to consider geographic and individual variability when assessing the foraging ecology of marine predators.

3.
J S Afr Vet Assoc ; 92(0): e1-e5, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34082540

RESUMEN

Anaesthesia in pinnipeds is considered a much higher risk than in most terrestrial mammals because of their frequent proximity to water and physiological and anatomical adaptations related to diving, which also influence their anaesthesia management. Anaesthetising and immobilising entangled seals does not allow for selection of animals that are at a safe distance from the water's edge. Medetomidine-midazolam-butorphanol (MMB) sedation was trialled on eight entangled Cape fur seals (CFS) (Arctocephalus pusillus pusillus) to determine if it was safe to use on animals that entered the water post-darting. The MMB was given at an estimated dose of 0.03 mg/kg, 0.2 mg/kg and 0.2 mg/kg, respectively, via remote darting. Sedation was reversed with intramuscular atipamezole (0.15 mg/kg) and naltrexone (0.4 mg/kg) to antagonise the effects of medetomidine and butorphanol, respectively. Moderate sedation was achieved in six animals. Six of the animals entered the water after being darted. There was a single mortality and a single animal that was too lightly sedated for capture. The preliminary results indicate that MMB produces suitable sedation for disentanglement of CFS. Additionally, MMB might be suitable for application to field-based biological research.


Asunto(s)
Butorfanol/farmacología , Lobos Marinos , Medetomidina/farmacología , Midazolam/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Sedación Consciente , Combinación de Medicamentos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Imidazoles/administración & dosificación , Imidazoles/farmacología , Medetomidina/administración & dosificación , Midazolam/administración & dosificación , Naltrexona/administración & dosificación , Naltrexona/farmacología , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacología
4.
Curr Biol ; 27(13): R636-R637, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28697357

RESUMEN

A central paradigm of aquatic locomotion is that cetaceans use fluke strokes to power their swimming while relying on lift and torque generated by the flippers to perform maneuvers such as rolls, pitch changes and turns [1]. Compared to other cetaceans, humpback whales (Megaptera novaeangliae) have disproportionately large flippers with added structural features to aid in hydrodynamic performance [2,3]. Humpbacks use acrobatic lunging maneuvers to attack dense aggregations of krill or small fish, and their large flippers are thought to increase their maneuverability and thus their ability to capture prey. Immediately before opening their mouths, humpbacks will often rapidly move their flippers, and it has been hypothesized that this movement is used to corral prey [4,5] or to generate an upward pitching moment to counteract the torque caused by rapid water engulfment [6]. Here, we demonstrate an additional function for the rapid flipper movement during lunge feeding: the flippers are flapped using a complex, hydrodynamically active stroke to generate lift and increase propulsive thrust. We estimate that humpback flipper-strokes are capable of producing large forward oriented forces, which may be used to enhance lunge feeding performance. This behavior is the first observation of a lift-generating flipper-stroke for propulsion cetaceans and provides an additional function for the uniquely shaped humpback whale flipper.


Asunto(s)
Aletas de Animales/fisiología , Conducta Alimentaria , Yubarta/fisiología , Natación , Animales , Fenómenos Biomecánicos , Hidrodinámica
5.
PLoS One ; 12(3): e0172002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28249036

RESUMEN

Southern Hemisphere humpback whales (Megaptera novaeangliae) generally undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters. Evidence for such migrations arises from seasonality of historic whaling catches by latitude, Discovery and natural mark returns, and results of satellite tagging studies. Feeding is generally believed to be limited to the southern polar region, where Antarctic krill (Euphausia superba) has been identified as the primary prey item. Non-migrations and / or suspended migrations to the polar feeding grounds have previously been reported from a summer presence of whales in the Benguela System, where feeding on euphausiids (E. lucens), hyperiid amphipods (Themisto gaudichaudii), mantis shrimp (Pterygosquilla armata capensis) and clupeid fish has been described. Three recent research cruises (in October/November 2011, October/November 2014 and October/November 2015) identified large tightly-spaced groups (20 to 200 individuals) of feeding humpback whales aggregated over at least a one-month period across a 220 nautical mile region of the southern Benguela System. Feeding behaviour was identified by lunges, strong milling and repetitive and consecutive diving behaviours, associated bird and seal feeding, defecations and the pungent "fishy" smell of whale blows. Although no dedicated prey sampling could be carried out within the tightly spaced feeding aggregations, observations of E. lucens in the region of groups and the full stomach contents of mantis shrimp from both a co-occurring predatory fish species (Thyrsites atun) and one entangled humpback whale mortality suggest these may be the primary prey items of at least some of the feeding aggregations. Reasons for this recent novel behaviour pattern remain speculative, but may relate to increasing summer humpback whale abundance in the region. These novel, predictable, inter-annual, low latitude feeding events provide considerable potential for further investigation of Southern Hemisphere humpback feeding behaviours in these relatively accessible low-latitude waters.


Asunto(s)
Migración Animal/fisiología , Conducta Alimentaria/fisiología , Yubarta/fisiología , Estaciones del Año , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA