Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891908

RESUMEN

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Asunto(s)
Citocinas , Quinasas Quinasa Quinasa PAM , Atrofia Muscular , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Ratones , Citocinas/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/tratamiento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Zearalenona/farmacología , Zearalenona/análogos & derivados
2.
Antibiotics (Basel) ; 11(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009989

RESUMEN

Antibiotic-resistant bacteria remain a serious public health threat. In order to determine the percentage of antibiotic-resistant and -tolerant Pseudomonas aeruginosa cells present and to provide a more detailed infection risk of bacteria present in the environment, an isolation method using a combination of 41 °C culture and specific primers was established to evaluate P. aeruginosa in the environment. The 50 strains were randomly selected among 110 isolated from the river. The results of antibiotic susceptibility evaluation showed that only 4% of environmental strains were classified as antibiotic-resistant, while 35.7% of clinical strains isolated in the same area were antibiotic-resistant, indicating a clear difference between environmental and clinical strains. However, the percentage of antibiotic-tolerance, an indicator of potential resistance risk for strains that have not become resistant, was 78.8% for clinical strains and 90% for environmental strains, suggesting that P. aeruginosa, a known cause of nosocomial infections, has a high rate of antibiotic-tolerance even in environmentally derived strains. It suggested that the rate of antibiotic-tolerance is not elicited by the presence or absence of antimicrobial exposure. The combination of established isolation and risk analysis methods presented in this study should provide accurate and efficient information on the risk level of P. aeruginosa in various regions and samples.

3.
Clin Transl Immunology ; 11(1): e1371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35079379

RESUMEN

OBJECTIVES: Aberrant NLRP3 inflammasome activation has been demonstrated in rheumatoid arthritis (RA), which may contribute to debilitating inflammation and bone destruction. Here, we explored the efficacy of the potent TGF-ß-activated kinase-1 (TAK1) inhibitor LL-Z1640-2 (LLZ) on joint inflammation and bone destruction in collagen-induced arthritis (CIA). METHODS: LL-Z1640-2 was administered every other day in CIA mice. Clinical and histological evaluation was performed. Priming and activation of NLRP3 inflammasome and osteoclastogenic activity were assessed. RESULTS: NLRP3 inflammasome formation was observed in synovial macrophages and osteoclasts (OCs) in CIA mice. TACE and RANKL were also overexpressed in synovial macrophages and fibroblasts, respectively, in the CIA joints. Treatment with LLZ mitigated all the above changes. As a result, LLZ markedly suppressed synovial hypertrophy and pannus formation to alleviate pain and inflammation in CIA mice. LLZ could block the priming and activation of NLRP3 inflammasome in RAW264.7 macrophage cell line, primary bone marrow macrophages and OCs upon treatment with LPS followed by ATP, thereby suppressing their IL-1ß production. LLZ also suppressed LPS-induced production of TACE and TNF-α in bone marrow macrophages and abolished IL-1ß-induced production of MMP-3, IL-6 and RANKL in synovial fibroblasts. In addition, LLZ directly inhibits RANKL-mediated OC formation and activation. CONCLUSION: TAK1 inhibition with LLZ may become a novel treatment strategy to effectively alleviate inflammasome-mediated inflammation and RANKL-induced osteoclastic bone destruction in joints alongside its potent suppression of TNF-α and IL-6 production and proteinase-mediated pathological processes in RA.

4.
Transl Res ; 237: 16-30, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33775867

RESUMEN

Fish oil-derived long-chain monounsaturated fatty acids (LCMUFAs) with a carbon chain length longer than 18 units ameliorate cardiovascular risk in mice. In this study, we investigated whether LCMUFAs could improve endothelial functions in mice and humans. In a double-blind, randomized, placebo-controlled, parallel-group, multi-center study, healthy subjects were randomly assigned to either an LCMUFA oil (saury oil) or a control oil (olive and tuna oils) group. Sixty subjects were enrolled and administrated each oil for 4 weeks. For the animal study, ApoE-/- mice were fed a Western diet supplemented with 3% of either gadoleic acid (C20:1) or cetoleic acid (C22:1) for 12 weeks. Participants from the LCMUFA group showed improvements in endothelial function and a lower trimethylamine-N-oxide level, which is a predictor of coronary artery disease. C20:1 and C22:1 oils significantly improved atherosclerotic lesions and plasma levels of several inflammatory cytokines, including IL-6 and TNF-α. These beneficial effects were consistent with an improvement in the gut microbiota environment, as evident from the decreased ratio of Firmicutes and/ or Bacteroidetes, increase in the abundance of Akkermansia, and upregulation of short-chain fatty acid (SCFA)-induced glucagon-like peptide-1 (GLP-1) expression and serum GLP-1 level. These data suggest that LCMUFAs alter the microbiota environment that stimulate the production of SCFAs, resulting in the induction of GLP-1 secretion. Fish oil-derived long-chain monounsaturated fatty acids might thus help to protect against cardiovascular disease.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Ácidos Grasos Monoinsaturados/farmacología , Aceites de Pescado/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Biomarcadores , Glucemia , Mantequilla , Grasas de la Dieta , Método Doble Ciego , Ácidos Grasos Monoinsaturados/química , Femenino , Aceites de Pescado/análisis , Humanos , Lípidos/sangre , Masculino , Ratones , Ratones Noqueados para ApoE , Aceite de Oliva , Adulto Joven
5.
Antibiotics (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052885

RESUMEN

Macrolide antibiotics are used in treating Pseudomonas aeruginosa chronic biofilm infections despite their unsatisfactory antibacterial activity, because they display several special activities, such as modulation of the bacterial quorum sensing and immunomodulatory effects on the host. In this study, we investigated the effects of the newly synthesized P. aeruginosa quorum-sensing autoinducer analogs (AIA-1, -2) on the activity of azithromycin and clarithromycin against P. aeruginosa. In the killing assay of planktonic cells, AIA-1 and -2 enhanced the bactericidal ability of macrolides against P. aeruginosa PAO1; however, they did not affect the minimum inhibitory concentrations of macrolides. In addition, AIA-1 and -2 considerably improved the killing activity of azithromycin and clarithromycin in biofilm cells. The results indicated that AIA-1 and -2 could affect antibiotic tolerance. Moreover, the results of hydrocarbon adherence and cell membrane permeability assays suggested that AIA-1 and -2 changed bacterial cell surface hydrophobicity and accelerated the outer membrane permeability of the hydrophobic antibiotics such as azithromycin and clarithromycin. Our study demonstrated that the new combination therapy of macrolides and AIA-1 and -2 may improve the therapeutic efficacy of macrolides in the treatment of chronic P. aeruginosa biofilm infections.

6.
PLoS One ; 15(5): e0233390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437400

RESUMEN

Hypertrophy, associated with adipocyte dysfunction, causes increased pro-inflammatory adipokine, and abnormal glucose and lipid metabolism, leading to insulin resistance and obesity-related-health problems. By combining DNA microarray and genomic data analyses to predict DNA binding motifs, we identified the transcription factor Interferon Regulatory Factor 7 (IRF7) as a possible regulator of genes related to adipocyte hypertrophy. To investigate the role of IRF7 in adipocytes, we examined gene expression patterns in 3T3-L1 cells infected with a retrovirus carrying the IRF7 gene and found that enforced IRF7 expression induced the expression of monocyte chemoattractant protein-1 (MCP-1), a key initial adipokine in the chronic inflammation of obesity. CRISPR/Cas9 mediated-suppression of IRF7 significantly reduced MCP-1 mRNA. Luciferase assays, chromatin immunoprecipitation PCR analysis and gel shift assay showed that IRF7 transactivates the MCP-1 gene by binding to its proximal Interferon Stimulation Response Element (ISRE), a putative IRF7 binding motif. IRF7 knockout mice exhibited lower expression of MCP-1 in epidydimal white adipose tissue under high-fat feeding conditions, suggesting the transcription factor is physiologically important for inducing MCP-1. Taken together, our results suggest that IRF7 transactivates MCP-1 mRNA in adipocytes, and it may be involved in the adipose tissue inflammation associated with obesity.


Asunto(s)
Adipocitos/metabolismo , Quimiocina CCL2/genética , Factor 7 Regulador del Interferón/genética , Obesidad/genética , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Quimiocina CCL2/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Factor 7 Regulador del Interferón/metabolismo , Ratones , Ratones Noqueados , Obesidad/metabolismo , Regiones Promotoras Genéticas
7.
J Med Invest ; 67(1.2): 139-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32378597

RESUMEN

Background and aims : Severe aortic stenosis (AS) has been normally treated with surgical aortic valve replacement (AVR) whereas recently, transcatheter aortic valve implantation (TAVI) has been introduced as a minimally invasive operation for patients with high surgical risk and frailty. In this study, we have evaluated postoperative physical function and nutrition intake in the patients following AVR and TAVI. Methods : This prospective observational study involved 9 patients with surgical aortic valve replacement (AVR) and 7 patients with transcatheter aortic valve implantation (TAVI). Body composition was measured one day prior surgery, postoperative day (POD) 1, POD 3, POD 5 and POD 7. Hand grip strength, calf circumference and gait speed were measured one day before surgery and on the day of discharge. Results : Skeletal muscle was significantly decreased in AVR patients at postoperative day 3 and 7, while there was no change in TAVI patients. Patients with TAVI showed higher dietary intake after surgery compared to patients with AVR, and they maintained hand grip strength and calf circumference at discharge. Conclusions : In elderly patients with AS, TAVI can improve post-operative recovery maintaining nutritional status and physical function even. J. Med. Invest. 67 : 139-144, February, 2020.


Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Estado Nutricional , Reemplazo de la Válvula Aórtica Transcatéter , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/fisiopatología , Composición Corporal , Femenino , Fuerza de la Mano , Humanos , Masculino , Periodo Posoperatorio , Estudios Prospectivos , Velocidad al Caminar
8.
Artículo en Inglés | MEDLINE | ID: mdl-32070490

RESUMEN

Researchers frequently use 3T3-L1 adipocytes as a fat cell line, but the capacity of this line for insulin-mediated glucose transport is lower than that of primary isolated fat cells. In this study, we found that 5-azacytidine (5-aza-C), DNA methyltransferase 1 inhibitor, enhanced insulin-stimulated 2-deoxyglucose (2-DG) transport in 3T3-L1 cells after adipogenic differentiation. We next examined the expression of the genes related to glucose transport and insulin signal transduction. The insulin independent glucose transporter, glucose transporter 1 (GLUT1), showed lower expression in 5-aza-C pre-treated 3T3-L1 adipocytes, than in un-treated control adipocytes, while the expression of insulin dependent transporter GLUT4 remained unchanged. In addition, insulin receptor substrate-1 (IRS-1) was highly expressed in 5-aza-C pre-treated adipocytes. Based on DNA microarray and functional annotation analysis, we noticed that 5-aza-C pretreatment activated the tumor suppressor p53 pathway. We confirmed that in 5-aza-C adipocytes, p53 expression was markedly higher, and the methylation level of CpGs in its promoter region was lower than in un-treated control adipocytes. Moreover, pharmacological inhibition of p53 restored GLUT1 and IRS-1 expression to the same level as in un-treated 3T3-L1 adipocytes, and significantly decreased insulin-mediated 2-DG uptake. These results suggest that glucose transport capacity in adipocytes is influenced by DNA methylation status, and demethylation induced by 5-aza-C increased it possibly through the p53 signaling pathway.

9.
J Med Invest ; 65(3.4): 166-170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282855

RESUMEN

Tofacitinib is the first Janus Kinase (JAK) inhibitor to treat moderately to severely active RA. In this study, we investigated whether the effect of tofacitinib have any effects on body composition in mice and female patients with RA. Female C57BL/6 mice fed with a high-fat diet were treated with 30 mg/kg/day tofacitinib or vehicle for 70 days. Following treatment, trunk muscle, subcutaneous fat, and visceral fats were measured using X-ray computed tomography CT scan. Glucose tolerance and insulin sensitivity were assessed. In female RA patients treated with biological disease modified anti-rheumatic-drugs (biological DMARDs) or tofacitinib (n=4 per group), we also evaluated the body composition after 3 months from the start of treatment initiation using bioelectrical impedance analysis. Treatment with tofacitinib did not affect the body weight, and body composition in C57BL/6 mice. It also did not affect glucose, and insulin tolerance in mice. In patients with RA, treatment with biological DMARDs did not affect the body composition whereas the muscle mass was unchanged after receiving tofacitinib and the fat mass was significantly increased. J. Med. Invest. 65:166-170, August, 2018.


Asunto(s)
Composición Corporal/efectos de los fármacos , Glucosa/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Piperidinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Adiposidad/efectos de los fármacos , Adulto , Anciano , Animales , Antirreumáticos/efectos adversos , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Inhibidores de las Cinasas Janus/efectos adversos , Lipólisis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piperidinas/efectos adversos , Pirimidinas/efectos adversos , Pirroles/efectos adversos , Aumento de Peso/efectos de los fármacos
10.
Peptides ; 87: 12-19, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27825986

RESUMEN

There is an increasing interest in elucidating the molecular mechanisms by which voluntary exercise is regulated. In this study, we examined how the central nervous system regulates exercise. We used SPORTS rats, which were established in our laboratory as a highly voluntary murine exercise model. SPORTS rats showed lower levels of serum ghrelin compared with those of the parental line of Wistar rats. Intracerebroventricular and intraperitoneal injection of ghrelin decreased wheel-running activity in SPORTS rats. In addition, daily injection of the ghrelin inhibitor JMV3002 into the lateral ventricles of Wistar rats increased wheel-running activity. Co-administration of obestatin inhibited ghrelin-induced increases in food intake but did not inhibit ghrelin-induced suppression of voluntary exercise in rats. Growth hormone secretagogue receptor (GHSR) in the hypothalamus and hippocampus of SPORTS rats was not difference that in control rats. We created an arcuate nucleus destruction model by administering monosodium glutamate (MSG) to neonatal SPORTS rats. Injection of ghrelin into MSG-treated rats decreased voluntary exercise but did not increase food intake, suggesting that wheel-running activity is not controlled by the arcuate nucleus neurons that regulate feeding. These results provide new insights into the mechanism by which ghrelin regulates voluntary activity independent of arcuate nucleus neurons.


Asunto(s)
Ghrelina/metabolismo , Actividad Motora/efectos de los fármacos , Condicionamiento Físico Animal , Carrera/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ghrelina/administración & dosificación , Infusiones Intraventriculares , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Glutamato de Sodio/administración & dosificación
11.
PLoS One ; 11(8): e0160532, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494408

RESUMEN

Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis.


Asunto(s)
Adipocitos/fisiología , Metilación de ADN , Leptina/genética , Células 3T3-L1/efectos de los fármacos , Animales , Azacitidina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Regiones Promotoras Genéticas
12.
Clin Calcium ; 26(3): 459-62, 2016 Mar.
Artículo en Japonés | MEDLINE | ID: mdl-26923986

RESUMEN

In this session, we describe the acute phase in patients with metabolic syndrome from two sides; acute disease that occurs higher in patients with metabolic syndrome such as colonary heart disease and stroke, and acute aggravation of diabetes such as diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome. The electrolyte imbalance is frequently detected in critical ill patients. It is reported that the extreme abnormalities of ionized calcium concentrations are independent predictors of mortality. In addition, from clinical database MIMIC-Ⅱ,calcium supplementation improves clinical outcome in intensive care unit patients. Although metabolic syndrome; lifestyle-related disease, is a chronic disease, the possibility of falling into acute disease by having it becomes very high and improvement of electrolyte imbalance, especially hypocalcaemia is expected to effective on clinical outcome.


Asunto(s)
Calcio/metabolismo , Cetoacidosis Diabética/metabolismo , Hiperglucemia/metabolismo , Síndrome Metabólico/metabolismo , Estado Nutricional/fisiología , Accidente Cerebrovascular/terapia , Cetoacidosis Diabética/terapia , Humanos , Síndrome Metabólico/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA