Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611021

RESUMEN

Neuroblastoma (NB) is an embryonal tumor arising from the sympathetic central nervous system. The epidermal growth factor (EGF) plays a role in NB growth and metastatic behavior. Recently, we have demonstrated that cathepsin D (CD) contrasts EGF-induced NB cell growth in 2D by downregulating EGFR/MAPK signaling. Aggressive NB is highly metastatic to the bone and the brain. In the metastatic process, adherent cells detach to form clusters of suspended cells that adhere once they reach the metastatic site and form secondary colonies. Whether CD is involved in the survival of metastatic NB clones is not known. Therefore, in this study, we addressed how CD differentially affects cell growth in suspension versus the adherent condition. To mimic tumor heterogeneity, we co-cultured transgenic clones silenced for or overexpressing CD. We compared the growth kinetics of such mixed clones in 2D and 3D models in response to EGF, and we found that the Over CD clone had an advantage for growth in suspension, while the CD knocked-down clone was favored for the adherent growth in 2D. Interestingly, on switching from 3D to 2D culture conditions, the expression of E-cadherin and of N-cadherin increased in the KD-CD and Over CD clones, respectively. The fact that CD plays a dual role in cancer cell growth in 2D and 3D conditions indicates that during clonal evolution, subclones expressing different level of CD may arise, which confers survival and growth advantages depending on the metastatic step. By searching the TCGA database, we found up to 38 miRNAs capable of downregulating CD. Interestingly, these miRNAs are associated with biological processes controlling cell adhesion and cell migration. The present findings support the view that during NB growth on a substrate or when spreading as floating neurospheres, CD expression is epigenetically modulated to confer survival advantage. Thus, epigenetic targeting of CD could represent an additional strategy to prevent NB metastases.

2.
Cells ; 12(15)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566004

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is characterized by high molecular and clinical heterogeneity. Autophagy, a lysosome-driven catabolic process devoted to macromolecular turnover, is fundamental in maintaining normal hematopoietic stem cells and progenitors homeostasis, and its dysregulation plays a critical role in the initiation and progression of hematological malignancies. One main regulator of autophagy is BECLIN-1, which may interact alternatively with either BCL-2, thus allowing apoptosis, or PI3KC3, thus promoting autophagy. The altered expression of BCL2 and BECN1 correlates with lymphoma outcomes, but whether this is associated with dysregulated cross-talk between autophagy and apoptosis remains to be elucidated. Analysis of the TCGA database revealed that BCL2 and BECN1 mRNA expression were inversely correlated in DLBCL patients. In representative DLBCL cell lines exposed to doxorubicin, the cells highly expressing BCL-2 were resistant, while the ones highly expressing BECLIN-1 were sensitive, and this correlated with low and high autophagy flux, respectively. Venetoclax targeting of BCL-2 increased while the spautin-1-mediated inhibition of BECLIN-1-dependent autophagy reversed doxorubicin sensitivity in the former and in the latter, respectively. By interrogating the TCGA DLBCL dataset, we found that BCL2 and BECN1 acted as negative and positive prognostic markers for DLBCL, respectively. The differentially expressed gene analysis in the respective cohorts revealed that BCL2 positively correlated with oncogenic pathways (e.g., glucose transport, HIF1A signaling, JAK-STAT signaling, PI3K-AKT-mTOR pathway) and negatively correlated with autophagy-related transcripts, while BECN1 showed the opposite trend. Notably, patients with high BECN1 expression displayed longer survival. Our data reveal, for the first time, that the modulation of BECLIN-1-dependent autophagy influences the prognosis of DLBCL patients and provide a mechanistic explanation supporting the therapeutic use of drugs that, by stimulating autophagy, can sensitize lymphoma cells to chemotherapy.


Asunto(s)
Linfoma de Células B Grandes Difuso , Fosfatidilinositol 3-Quinasas , Humanos , Beclina-1/genética , Beclina-1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Autofagia/genética
3.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563171

RESUMEN

Neuroblastoma is a malignant extracranial solid tumor arising from the sympathoadrenal lineage of the neural crest and is often associated with N-MYC amplification. Cathepsin D has been associated with chemoresistance in N-MYC-overexpressing neuroblastomas. Increased EGFR expression also has been associated with the aggressive behavior of neuroblastomas. This work aimed to understand the mechanisms linking EGFR stimulation and cathepsin D expression with neuroblastoma progression and prognosis. Gene correlation analysis in pediatric neuroblastoma patients revealed that individuals bearing a high EGFR transcript level have a good prognosis only when CTSD (the gene coding for the lysosomal protease Cathepsin D, CD) is highly expressed. Low CTSD expression was associated with poor clinical outcome. CTSD expression was negatively correlated with CCNB2, CCNA2, CDK1 and CDK6 genes involved in cell cycle division. We investigated the biochemical pathways downstream to EGFR stimulation in human SH-SY5Y neuroblastoma cells engineered for overexpressing or silencing of CD expression. Cathepsin D overexpression decreased the proliferative potential of neuroblastoma cells through downregulation of the pro-oncogenic MAPK signaling pathway. EGFR stimulation downregulated cathepsin D expression, thus favoring cell cycle division. Our data suggest that chemotherapeutics that inhibit the EGFR pathway, along with stimulators of cathepsin D synthesis and activity, could benefit neuroblastoma prognosis.


Asunto(s)
Catepsina D , Neuroblastoma , Catepsina D/genética , Catepsina D/metabolismo , Ciclo Celular/genética , Niño , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lisosomas/metabolismo , Neuroblastoma/metabolismo , Péptido Hidrolasas/metabolismo
4.
Biomed Pharmacother ; 135: 111182, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33433355

RESUMEN

Keloids are characterized by increased deposition of fibrous tissue in the skin and subcutaneous tissue following an abnormal wound healing process. Although keloid etiology is yet to be fully understood, fibroblasts are known to be key players in its development. Here we analyze the antifibrotic mechanisms of Halofuginone (HF), a drug reportedly able to inhibit the TGF-ß1-Smad3 pathway and to attenuate collagen synthesis, in an in-vitro keloid model using patient-derived Keloid Fibroblasts (KFs) isolated from fibrotic tissue collected during the "Scar Wars" clinical study (NCT NCT03312166). TGF-ß1 was used as a pro-fibrotic agent to stimulate fibroblasts response under HF treatment. The fibrotic related properties of KFs, including survival, migration, proliferation, myofibroblasts conversion, ECM synthesis and remodeling, were investigated in 2D and 3D cultures. HF at 50 nM concentration impaired KFs proliferation, and decreased TGF-ß1-induced expression of α-SMA and type I procollagen production. HF treatment also reduced KFs migration, prevented matrix contraction and increased the metallo-proteases/inhibitors (MMP/TIMP) ratio. Overall, HF elicits an anti-fibrotic contrasting the TGF-ß1 stimulation of KFs, thus supporting its therapeutic use for keloid prevention and management.


Asunto(s)
Fibroblastos/efectos de los fármacos , Queloide/tratamiento farmacológico , Piperidinas/farmacología , Quinazolinonas/farmacología , Piel/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Actinas/metabolismo , Adulto , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Queloide/metabolismo , Queloide/patología , Masculino , Persona de Mediana Edad , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Procolágeno/metabolismo , Piel/metabolismo , Piel/patología , Adulto Joven
5.
Front Oncol ; 10: 599915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364196

RESUMEN

Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.

6.
J Tradit Complement Med ; 10(3): 217-229, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32670816

RESUMEN

BACKGROUND AND AIM: Non-coding RNAs control cell functioning through affecting gene expression and translation and their dysregulation is associated with altered cell homeostasis and diseases, including cancer. Nutraceuticals with anti-cancer therapeutic potential have been shown to modulate non-coding RNAs expression that could impact on the expression of genes involved in the malignant phenotype. EXPERIMENTAL PROCEDURE: Here, we report on the microarray profiling of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and on the associated biochemical pathways and functional processes potentially modulated in OVCAR-3 ovarian cancer cells exposed for 24 h to Resveratrol (RV), a nutraceutical that has been shown to inhibit carcinogenesis and cancer progression in a variety of human and animal models, both in vitro and in vivo. Diana tools and Gene Ontology (GO) pathway analyses along with Pubmed literature search were employed to identify the cellular processes possibly affected by the dysregulated miRNAs and lncRNAs. RESULTS AND CONCLUSION: The present data consistently support the contention that RV could exert anti-neoplastic activity via non-coding RNAs epigenetic modulation of the pathways governing cell homeostasis, cell proliferation, cell death and cell motility.

7.
Semin Cancer Biol ; 66: 34-44, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31054926

RESUMEN

Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Productos Biológicos/farmacología , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Humanos , Transducción de Señal/efectos de los fármacos
8.
Cell Commun Signal ; 17(1): 98, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426798

RESUMEN

BACKGROUND/AIM: Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS: To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. RESULTS: We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, ß-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 µM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. CONCLUSIONS: Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.


Asunto(s)
Autofagia , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Autofagia/efectos de los fármacos , Beclina-1/antagonistas & inhibidores , Beclina-1/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Resveratrol/farmacología , Transducción de Señal/efectos de los fármacos
9.
Methods Mol Biol ; 1882: 197-206, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30378056

RESUMEN

Macroautophagy is a catabolic process through which redundant, aged, or damaged cellular structures are first enclosed within double-membrane vesicles (called autophagosomes), and thereafter degraded within lysosomes. Macroautophagy provides a primary route for the turnover of macromolecules, membranes and organelles, and as such plays a major role in cell homeostasis. As part of the stress response, autophagy is crucial to determine the cell fate in response to extracellular or intracellular injuries. Autophagy is involved in cancerogenesis and in cancer progression. Here we illustrate the essential methods for monitoring autophagy in pancreatic cancer cells.


Asunto(s)
Proteínas Relacionadas con la Autofagia/análisis , Autofagia , Immunoblotting/métodos , Neoplasias Pancreáticas/patología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinogénesis/patología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Cloroquina/farmacología , Progresión de la Enfermedad , Electroforesis en Gel de Poliacrilamida/instrumentación , Electroforesis en Gel de Poliacrilamida/métodos , Colorantes Fluorescentes/química , Humanos , Immunoblotting/instrumentación , Lisosomas/patología , Macrólidos/farmacología , Ratones , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Páncreas/citología , Páncreas/patología
10.
Neurochem Int ; 117: 174-187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28532681

RESUMEN

Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Dopamina/toxicidad , Proteína Huntingtina/biosíntesis , Fármacos Neuroprotectores/farmacología , Fagosomas/efectos de los fármacos , Resveratrol/farmacología , Antioxidantes/farmacología , Autofagia/fisiología , Línea Celular Tumoral , Humanos , Proteína Huntingtina/genética , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fagosomas/metabolismo , Fagosomas/patología
11.
Neurochem Int ; 101: 132-143, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27840125

RESUMEN

Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.


Asunto(s)
Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Dopamina/farmacología , Estrés Oxidativo/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dopamina/metabolismo , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA