RESUMEN
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.
Asunto(s)
Histonas , Fenotipo , Humanos , Masculino , Femenino , Histonas/genética , Niño , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Preescolar , Adolescente , Adulto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patologíaRESUMEN
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Asunto(s)
Trastornos del Neurodesarrollo , Empalmosomas , Humanos , Empalmosomas/genética , Redes Reguladoras de Genes , Trastornos del Neurodesarrollo/genética , Mutación Missense , Empalme del ARN , Factores de Empalme de ARN/genética , Proteínas Nucleares/genética , Enzimas Reparadoras del ADN/genéticaRESUMEN
BACKGROUND: Congenital myasthenic syndromes (CMSs) are characterized by hypotonia, episodic apnea, muscle weakness, ptosis and generalized fatigability. CMS type 20 (CMS20) is a rare disorder caused by variants in SLC5A7. In contrast to most other CMSs, CMS20 is also associated with neurodevelopmental disorders (NDDs). Only 19 patients from 14 families have been reported so far. METHODS: We studied a 12-year-old boy with symptoms manifested at six weeks of age. Later, he also showed speech delay, moderate intellectual disability and autism. Analysis of CMS genes known at the time of clinical diagnosis yielded no results. Trio exome sequencing (ES) was performed. RESULTS: ES revealed compound heterozygosity for two SLC5A7 variants, p.(Asn431Lys) and p.(Ile291Thr). While the first variant was absent from all databases, the second variant has already been described in one patient. In silico analysis of known pathogenic SLC5A7 variants showed that variants with a higher predicted deleteriousness may be associated with earlier onset and increased severity of neuromuscular manifestations. CONCLUSION: Our patient confirms that CMS20 can be associated with NDDs. The study illustrates the strength of ES in deciphering the genetic basis of rare diseases, contributes to characterization of CMS20 and suggests trends in genotype-phenotype correlation in CMS20.
Asunto(s)
Discapacidad Intelectual , Síndromes Miasténicos Congénitos , Simportadores , Masculino , Humanos , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/diagnóstico , Mutación Missense , Heterocigoto , Discapacidad Intelectual/complicaciones , Estudios de Asociación Genética , Simportadores/genéticaRESUMEN
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Riñón Fusionado/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Secuencia de Aminoácidos , Animales , Encefalopatías/etiología , Niño , Preescolar , Epilepsia/complicaciones , Evolución Molecular , Femenino , Frecuencia de los Genes , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Fenotipo , Estabilidad Proteica , Síndrome , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Adulto Joven , Pez Cebra/genéticaRESUMEN
PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Mutación Missense , FenotipoRESUMEN
The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.
Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Hidrolasas/química , Hidrolasas/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico por imagen , Tubulina (Proteína)/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Genetic testing rapidly penetrates into all medical specialties and medical students must acquire skills in this area. However, many of them consider it difficult. Furthermore, many find these topics less appealing and not connected to their future specialization in different fields of clinical medicine. Student-centred strategies such as problem-based learning, gamification and the use of real data can increase the appeal of a difficult topic such as genetic testing, a field at the crossroads of genetics, molecular biology and bioinformatics. METHODS: We designed an electronic teaching application which students registered in the undergraduate Medical Biology course can access online. A study was carried out to assess the influence of implementation of the new method. We performed pretest/posttest evaluation and analyzed the results using the sign test with median values. We also collected students' personal comments. RESULTS: The newly developed interactive application simulates the process of molecular genetic diagnostics of a hereditary disorder in a family. Thirteen tasks guide students through clinical and laboratory steps needed to reach the final diagnosis. Genetics and genomics are fields strongly dependent on electronic databases and computer-based data analysis tools. The tasks employ publicly available internet bioinformatic resources used routinely in medical genetics departments worldwide. Authenticity is assured by the use of modified and de-identified clinical and laboratory data from real families analyzed in our previous research projects. Each task contains links to databases and data processing tools needed to solve the task, and an answer box. If the entered answer is correct, the system allows the user to proceed to the next task. The solving of consecutive tasks arranged into a single narrative resembles a computer game, making the concept appealing. There was a statistically significant improvement of knowledge and skills after the practical class, and most comments on the application were positive. A demo version is available at https://medbio.lf2.cuni.cz/demo_m/ . Full version is available on request from the authors. CONCLUSIONS: Our concept proved to be appealing to the students and effective in teaching medical molecular genetics. It can be modified for training in the use of electronic information resources in other medical specialties.
Asunto(s)
Instrucción por Computador , Educación de Pregrado en Medicina/métodos , Pruebas Genéticas , Genética Médica/educación , Biología Computacional/educación , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Medicina Molecular/educación , Aprendizaje Basado en Problemas , Enseñanza , Interfaz Usuario-Computador , Juegos de VideoRESUMEN
NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.
Asunto(s)
Disfunción Cognitiva/genética , Mutación Missense/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo/genética , Exones/genética , Regulación de la Expresión Génica/genética , Genes Ligados a X/genética , Histona Desacetilasas/genética , Humanos , Alineación de Secuencia , Transcriptoma/genética , Pez Cebra/genéticaRESUMEN
The importance of gonadal mosaicism in families with apparently de novo mutations is being increasingly recognized. We report on two affected brothers initially suggestive of X-linked or autosomal recessive inheritance. Malan syndrome due to shared NFIX variants was diagnosed in the brothers using exome sequencing. The boys shared the same paternal but not maternal haplotype around NFIX, and deep amplicon sequencing showed ~7% of the variant in paternal sperm but not in paternal blood and saliva. We performed review of previous cases of gonadal mosaicism, which suggests that the phenomenon is not uncommon. Gonadal mosaicism is often not accompanied by somatic mosaicism in tissues routinely used for testing, and if both types of mosaicism are present, the frequency of the variant in sperm is often higher than in somatic cells. In families with shared apparently de novo variants without evidence of parental somatic mosaicism, the transmitting parent may be determined through haplotyping of exome variants. Gonadal mosaicism has important consequences for recurrence risks and should be considered in genetic counseling in families with de novo variants.
Asunto(s)
Anomalías Múltiples/genética , Gónadas/patología , Mosaicismo , Mutación/genética , Factores de Transcripción NFI/genética , Hermanos , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Masculino , Factores de Transcripción NFI/química , Linaje , Embarazo , Síndrome , Adulto JovenRESUMEN
BACKGROUND: Intellectual disability (ID) is a feature of many rare diseases caused by thousands of genes. This genetic heterogeneity implies that pathogenic variants in a specific gene are found only in a small number of patients, and difficulties arise in the definition of prevailing genotype and characteristic phenotype associated with that gene. One of such very rare disorders is autosomal recessive ID type 66 (OMIM #618221) caused by defects in C12orf4. Up to now, six families have been reported with mostly truncating variants. The spectrum of the clinical phenotype was not emphasized in previous reports, and detailed phenotype was not always available from previous patients, especially from large cohort studies. METHODS: Exome sequencing was performed in a consanguineous Armenian family with two affected adult brothers. RESULTS: The patients carry a novel homozygous nonsense C12orf4 variant. The integration of previous data and phenotyping of the brothers indicate that the clinical picture of C12orf4 defects involves hypotonia in infancy, rather severe ID, speech impairment, and behavioral problems such as aggressiveness, unstable mood, and autistic features. Several other symptoms are more variable and less consistent. CONCLUSION: This rather nonsyndromic and nonspecific clinical picture implies that additional patients with C12orf4 defects will likely continue to be identified using the "genotype-first" approach, rather than based on clinical assessment. The phenotype needs further delineation in future reports.
Asunto(s)
Consanguinidad , Genes Recesivos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Fenotipo , Adulto , Alelos , Armenia/epidemiología , Preescolar , Análisis Mutacional de ADN , Facies , Homocigoto , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación del ExomaRESUMEN
The RNA polymerase II complex (pol II) is responsible for transcription of all â¼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/enzimología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de Unión al GTP ral/genética , Proteínas ras/genética , Facies , Genotipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación Missense , Fenotipo , Conformación Proteica , Proteínas de Unión al GTP ral/química , Proteínas ras/químicaRESUMEN
BACKGROUND: With only 11 patients reported, 5p tetrasomy belongs to rare postnatal findings. Most cases are due to small supernumerary marker chromosomes (sSMCs) or isochromosomes. The patients share common but unspecific symptoms such as developmental delay, seizures, ventriculomegaly, hypotonia, and fifth finger clinodactyly. Simple interstitial duplications leading to trisomies of parts of 5p are much more frequent and better described. Duplications encompassing 5p13.2 cause a defined syndrome with macrocephaly, distinct facial phenotype, heart defects, talipes equinovarus, feeding difficulties, respiratory distress and anomalies of the central nervous system, developmental delay and hypotonia. CASE PRESENTATION: We present a boy with dysmorphic features, developmental delay, intellectual disability and congenital anomalies, and a mosaic sSMC inv dup(5)(p15.33p15.1). He is the fourth and the oldest reported patient with distal 5p tetrasomy. His level of mosaicism was significantly different in lymphocytes (13.2%) and buccal cells (64.7%). The amplification in our patient is smaller than that in the three previously published patients but the only phenotype difference is the absence of seizures in our patient. CONCLUSIONS: Our observations indicate that for the assessment of prognosis, especially with respect to intellectual functioning, the level of mosaicism could be more important than the extent of amplification and the number of extra copies. Evaluation of the phenotypical effect of rare chromosomal aberrations is challenging and each additional case is valuable for refinement of the genotype-phenotype correlation. Moreover, our patient demonstrates that if the phenotype is severe and if the level of sSMC mosaicism is low in lymphocytes, other tissues should be tested.
RESUMEN
The prenatal finding of a small supernumerary marker chromosome (sSMC) is a challenge for genetic counseling. Our analytic algorithm is based on sSMC frequencies and multicolor FISH to accelerate the procedure. The chromosomal origin, size, and degree of mosaicism of the sSMC then determine the prognosis. We illustrate the effectiveness on 4 prenatally identified de novo mosaic sSMCs derived from chromosomes 13/21, X, 3, and 17. Three sSMC carriers had a good prognosis and apparently healthy children were born, showing no abnormality till the last examination at the age of 4 years. One case had a poor prognosis, and the parents decided to terminate the pregnancy. Our work contributes to the laboratory and clinical management of prenatally detected sSMCs. FISH is a reliable method for fast sSMC evaluation and prognosis assessment; it prevents unnecessary delays and uncertainty, allows informed decision making, and reduces unnecessary pregnancy terminations.
Asunto(s)
Aberraciones Cromosómicas , Heterocigoto , Diagnóstico Prenatal , Adulto , Algoritmos , Preescolar , Femenino , Estudios de Asociación Genética , Asesoramiento Genético , Humanos , Hibridación Fluorescente in Situ , Lactante , Cariotipificación , Masculino , Edad Materna , Embarazo , PronósticoRESUMEN
Microdeletions of 17q24.2-q24.3 have been described in several patients with developmental and speech delay, growth retardation, and other features. The relatively large size and limited overlap of the deletions complicate the genotype-phenotype correlation. We identified a girl with intellectual disability, growth retardation, dysmorphic features, and a de novo 2.8 Mb long deletion of 17q24.2-q24.3. Her phenotype was strikingly similar to one previously described boy with Dubowitz syndrome (MIM 223370) and a de novo 3.9 Mb long deletion encompassing the deletion of our patient. In addition, both patients had the shortest telomeres among normal age-matched controls. Our review of all 17q24.2-q24.3 deletion patients revealed additional remarkable phenotypic features shared by the patients, some of which have consequences for their management. Proposed novel genotype-phenotype correlations based on new literature information on the region include the role of PSMD12 and BPTF, the genes recently associated with syndromic neurodevelopmental disorders, and a possible role of the complex topologically associated domain structure of the region, which may explain some of the phenotypic discrepancies observed between patients with similar but not identical deletions. Nevertheless, although different diagnoses including the Dubowitz, Nijmegen breakage (MIM 251260), Silver-Russell (MIM 180860), or Myhre (MIM 139210) syndromes were originally considered in the 17q24.2-q24.3 deletion patients, they clearly belong to one diagnostic entity defined by their deletions and characterized especially by developmental delay, specific facial dysmorphism, abnormalities of extremities and other phenotypes, and possibly also short telomere length.
Asunto(s)
Cromosomas Humanos Par 17 , Discapacidades del Desarrollo/genética , Telómero , Niño , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Discapacidades del Desarrollo/etiología , Eccema/etiología , Cara/anomalías , Facies , Femenino , Fibromatosis Gingival/genética , Trastornos del Crecimiento/etiología , Humanos , Hipertricosis/genética , Discapacidad Intelectual/etiología , Microcefalia/etiología , FenotipoRESUMEN
Analyses at nucleotide resolution reveal unexpected complexity of seemingly simple and balanced chromosomal rearrangements. Chromothripsis is a rare complex aberration involving local shattering of one or more chromosomes and reassembly of the resulting DNA segments. This can influence gene expression and cause abnormal phenotypes. We studied the structure and mechanism of a seemingly balanced de novo complex rearrangement of four chromosomes in a boy with developmental and growth delay. Microarray analysis revealed two paternal de novo deletions of 0.7 and 2.5 Mb at two of the breakpoints in 1q24.3 and 6q24.1-q24.2, respectively, which could explain most symptoms of the patient. Subsequent whole-genome mate-pair sequencing confirmed the chromothriptic nature of the rearrangement. The four participating chromosomes were broken into 29 segments longer than 1 kb. Sanger sequencing of all breakpoint junctions revealed additional complexity compatible with the involvement of different repair pathways. We observed translocation of a 33 bp long DNA fragment, which may have implications for the definition of the lower size limit of structural variants. Our observations and literature review indicate that even very small fragments from shattered chromosomes can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly.
Asunto(s)
Cromotripsis , Reparación del ADN , ADN/genética , Células Germinativas/metabolismo , Adolescente , Adulto , Secuencia de Bases , Preescolar , Cromosomas Humanos/genética , Humanos , Lactante , Recién Nacido , Cariotipo , MasculinoRESUMEN
Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Asunto(s)
Secuencia de Aminoácidos/genética , Trastorno Autístico/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Femenino , Humanos , Masculino , Receptores AMPA/genética , Receptores de Glutamato/genéticaRESUMEN
BACKGROUND: Whole exome sequencing is a powerful tool for the analysis of genetically heterogeneous conditions. The prioritization of variants identified often focuses on nonsense, frameshift and canonical splice site mutations, and highly deleterious missense variants, although other defects can also play a role. The definition of the phenotype range and course of rare genetic conditions requires long-term clinical follow-up of patients. CASE PRESENTATION: We report an adult female patient with severe intellectual disability, severe speech delay, epilepsy, autistic features, aggressiveness, sleep problems, broad-based clumsy gait and constipation. Whole exome sequencing identified a de novo mutation in the SYNGAP1 gene. The variant was located in the broader splice donor region of intron 10 and replaced G by A at position +5 of the splice site. The variant was predicted in silico and shown experimentally to abolish the regular splice site and to activate a cryptic donor site within exon 10, causing frameshift and premature termination. The overall clinical picture of the patient corresponded well with the characteristic SYNGAP1-associated phenotype observed in previously reported patients. However, our patient was 31 years old which contrasted with most other published SYNGAP1 cases who were much younger. Our patient had a significant growth delay and microcephaly. Both features normalised later, although the head circumference stayed only slightly above the lower limit of the norm. The patient had a delayed puberty. Her cognitive and language performance remained at the level of a one-year-old child even in adulthood and showed a slow decline. Myopathic facial features and facial dysmorphism became more pronounced with age. Although the gait of the patient was unsteady in childhood, more severe gait problems developed in her teens. While the seizures remained well-controlled, her aggressive behaviour worsened with age and required extensive medication. CONCLUSIONS: The finding in our patient underscores the notion that the interpretation of variants identified using whole exome sequencing should focus not only on variants in the canonical splice dinucleotides GT and AG, but also on broader splice regions. The long-term clinical follow-up of our patient contributes to the knowledge of the developmental trajectory in individuals with SYNGAP1 gene defects.