Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Physiol Res ; 63(2): 189-97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24397805

RESUMEN

Atorvastatin and insulin have distinct mechanisms of action to improve endothelial function. Therefore, we hypothesized that atorvastatin and insulin therapies alone or in combination could have beneficial effects on endothelium-dependent vascular reactivity, oxidative stress, inflammation and metabolic parameters in Goto-Kakizaki (GK) rats, a model of type 2 diabetes fed with atherogenic diet (GKAD). In parallel with the development of diabetes and lipid profile, the generation of oxidative stress was determined by measurement of lipid peroxides and oxidized proteins and the presence of inflammation was evaluated by assessing C-reactive protein (CRP). Additionally, endothelial dependent and independent vascular sensitivity to acetylcholine and sodium nitroprusside were evaluated. GKAD showed increased carbonyl stress, inflammation, fasting glycemia, dyslipidemia and endothelial dysfunction when compared to control GK rats. Noteworthy, supplementation with insulin deteriorated endothelial dysfunction while atorvastatin induced an improvement. Atorvastatin and insulin therapies in combination improved metabolic parameters, CRP levels and insulin resistance indexes and ameliorated endothelial dysfunction in GKAD rats while they were unable to reduce urinary 8-isoprostranes and plasma carbonyl compounds. The therapeutic association of atorvastatin and insulin provided a better metabolic control with a reduction in endothelial dysfunction in GKAD rats by a mechanism that involves an improvement in systemic inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Ácidos Heptanoicos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Pirroles/administración & dosificación , Animales , Atorvastatina , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Endotelio Vascular/fisiopatología , Masculino , Ratas , Resultado del Tratamiento
2.
Br J Pharmacol ; 153(5): 894-906, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17906683

RESUMEN

BACKGROUND AND PURPOSE: This study was conducted to investigate the effects of alpha-lipoic acid (alpha-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of alpha-LA. EXPERIMENTAL APPROACH: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with alpha-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups. KEY RESULTS: alpha-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with alpha-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with alpha-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression. CONCLUSIONS AND IMPLICATIONS: alpha-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to alpha-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Ácido Tióctico/farmacología , Envejecimiento , Animales , Colesterol/sangre , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Grasas de la Dieta , Endotelio Vascular/fisiopatología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Aceite de Soja/química , Triglicéridos/sangre
3.
Mol Cell Endocrinol ; 154(1-2): 79-88, 1999 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-10509803

RESUMEN

Nutrient stimulation of pancreatic beta-cells increases the cellular reduced pyridine nucleotide content, but the specific role of cytosolic redox state in glucose-induced insulin release (GIIR) remains undetermined. The role of cytosolic redox state has been assessed (as reflected by the lactate/pyruvate ratio) in nutrient- and non-nutrient-induced insulin release using a recently established glucose-sensitive clonal beta-cell line (BRIN-BD11). Long-term exposure to the NAD+ precursor vitamin nicotinic acid (NA, 100 microM) was used to promote a more oxidized state in the cytosol. Glucose (2-16 mM) evoked a dose-dependent rise in the cytosolic NADH/NAD+ ratio which was linearly related to the extent of GIIR. NA suppressed the glucose-induced rise in the NADH/NAD+ ratio and concomitantly reduced GIIR by 44%. It also inhibited, by 47%, the average glucose-induced rise in cytosolic free Ca2+ concentration ([Ca2+]i, assessed by fura-2 microfluorometry from single cells). The latter effect was not accounted for by a reduction in the activity of voltage-sensitive Ca2+ channels, inasmuch as both high K+- and tolbutamide-induced [Ca2+]i rises remained insensitive to NA exposure. NA did not affect insulin release evoked by any of the depolarizing agents, indicating that steps in the stimulus-secretion coupling cascade distal to Ca2+ influx are insensitive to changes in the cytosolic redox state. It is concluded that GIIR is partially controlled by the cytosolic redox state. Moreover, the impairment in GIIR, caused by a shift toward a more oxidized state in the cytosol, originates from an attenuated [Ca2+]i response. The latter is likely mediated by the influence of cytosolic redox state on specific metabolic pathways (NADH shuttle systems and/or the malonyl-CoA pathway), leading ultimately to enhancement of the activity of ATP-sensitive K+ channels.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Células Clonales/citología , Citosol/metabolismo , Humanos , Secreción de Insulina , Islotes Pancreáticos/ultraestructura , Niacina/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA