Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Fungal Biol Biotechnol ; 11(1): 4, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664850

RESUMEN

BACKGROUND: Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS: A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS: The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.

2.
Fungal Biol Biotechnol ; 10(1): 14, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400920

RESUMEN

BACKGROUND: The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS: The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS: Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.

3.
Nat Prod Rep ; 38(4): 702-722, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33404035

RESUMEN

Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.


Asunto(s)
Basidiomycota/genética , Genes Fúngicos/genética , Basidiomycota/enzimología , Basidiomycota/metabolismo , Redes y Vías Metabólicas/genética
4.
J Antibiot (Tokyo) ; 73(10): 711-720, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32820242

RESUMEN

The conspicuous bright golden to orange-reddish coloration of species of the basidiomycete genus Laetiporus is a hallmark feature of their fruiting bodies, known among mushroom hunters as the "chicken of the woods". This report describes the identification of an eight-domain mono-modular highly reducing polyketide synthase as sole enzyme necessary for laetiporic acid biosynthesis. Heterologous pathway reconstitution in both Aspergillus nidulans and Aspergillus niger verified that LpaA functions as a multi-chain length polyene synthase, which produces a cocktail of laetiporic acids with a methyl-branched C26-C32 main chain. Laetiporic acids show a marked antifungal activity on Aspergillus protoplasts. Given the multiple products of a single biosynthesis enzyme, our work underscores the diversity-oriented character of basidiomycete natural product biosynthesis.


Asunto(s)
Antifúngicos/metabolismo , Polienos/metabolismo , Sintasas Poliquetidas/metabolismo , Polyporales/enzimología , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Aspergillus nidulans/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Polienos/aislamiento & purificación , Polienos/farmacología , Sintasas Poliquetidas/genética , Polyporales/química , Polyporales/genética , Polyporales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA