Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Thromb Haemost ; 20(10): 2284-2292, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841276

RESUMEN

BACKGROUND: Erythrocyte aggregation is a phenomenon that is commonly found in several pathological disease states: stroke, myocardial infarction, thermal burn injury, and COVID-19. Erythrocyte aggregation is characterized by rouleaux, closely packed stacks of cells, forming three-dimensional structures. Healthy blood flow monodisperses the red blood cells (RBCs) throughout the vasculature; however, in select pathological conditions, involving hyperthermia and hypoxemia, rouleaux formation remains and results in occlusion of microvessels with decreased perfusion. OBJECTIVES: Our objective is to address the kinetics of rouleaux formation with sudden cessation of flow in variable temperature and oxygen conditions. METHODS: RBCs used in this in vitro system were obtained from healthy human donors. Using a vertical stop-flow system aligned with a microscope, images were acquired and analyzed for increased variation in grayscale to indicate increased aggregation. The onset of aggregation after sudden cessation of flow was determined at proscribed temperatures (37-49°C) and oxygen (0%, 10%), and in the presence and absence of 4, 4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Both autologous and homologous plasma were tested. RESULTS: RBCs in autologous plasma aggregate faster and with a higher magnitude with both hyperthermia and hypoxemia. Preventing deoxyhemoglobin from binding to band 3 with DIDS (dissociates the cytoskeleton from the membrane) fully blocks aggregation. Further, RBC aggregation magnitude is greater in autologous plasma. CONCLUSIONS: We show that the C-terminal domain of band 3 plays a pivotal role in RBC aggregation. Further, aggregation is enhanced by hyperthermia and hypoxemia.


Asunto(s)
COVID-19 , Hipertermia Inducida , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/metabolismo , Agregación Eritrocitaria/fisiología , Eritrocitos/metabolismo , Humanos , Hipoxia , Oxígeno/metabolismo
2.
J Vis Exp ; (179)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35068483

RESUMEN

Intravital microscopy (IVM) enables visualization of cell movement, division, and death at single-cell resolution. IVM through surgically inserted imaging windows is particularly powerful because it allows longitudinal observation of the same tissue over days to weeks. Typical imaging windows comprise a glass coverslip in a biocompatible metal frame sutured to the mouse's skin. These windows can interfere with the free movement of the mice, elicit a strong inflammatory response, and fail due to broken glass or torn sutures, any of which may necessitate euthanasia. To address these issues, windows for long-term abdominal organ and mammary gland imaging were developed from a thin film of polydimethylsiloxane (PDMS), an optically clear silicone polymer previously used for cranial imaging windows. These windows can be glued directly to the tissues, reducing the time needed for insertion. PDMS is flexible, contributing to its durability in mice over time-up to 35 days have been tested. Longitudinal imaging is imaging of the same tissue region during separate sessions. A stainless-steel grid was embedded within the windows to localize the same region, allowing the visualization of dynamic processes (like mammary gland involution) at the same locations, days apart. This silicone window also allowed monitoring of single disseminated cancer cells developing into micro-metastases over time. The silicone windows used in this study are simpler to insert than metal-framed glass windows and cause limited inflammation of the imaged tissues. Moreover, embedded grids allow for straightforward tracking of the same tissue region in repeated imaging sessions.


Asunto(s)
Microscopía Intravital , Siliconas , Animales , Movimiento Celular , Diagnóstico por Imagen , Microscopía Intravital/métodos , Ratones , Cráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA