RESUMEN
Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging studies. The objective of this study was to develop a lesion detection tool and apply it to an investigation of longitudinal changes in brain structure among individuals with chronic TBI. We identified 24 individuals with chronic moderate-to-severe TBI enrolled in the Late Effects of TBI (LETBI) study who had cortical lesions detected by T1-weighted MRI at two time points. Initial MRI scans were performed more than 1-year post-injury and follow-up scans were performed 3.1 (IQR=1.7) years later. We leveraged FreeSurfer parcellations of T1-weighted MRI volumes and a recently developed super-resolution technique, SynthSR, to identify cortical lesions in this longitudinal dataset. Trained raters received the data in a randomized order and manually corrected the automated lesion segmentation, yielding a final lesion mask for each scan at each timepoint. Lesion volume significantly increased between the two time points with a median volume change of 3.2 (IQR=5.9) mL (p<0.001), and the increases significantly exceeded the possible variance in lesion volume changes due to manual tracing errors (p < 0.001). Lesion volume significantly expanded longitudinally in 23 of 24 subjects, with all FDR corrected p-values ≤ 0.02. Inter-scan duration was not associated with the magnitude of lesion growth. We also demonstrated that the semi-automated tool showed a high level of accuracy compared to "ground truth" manual lesion segmentation. Semi-automated lesion segmentation is feasible in TBI studies and creates opportunities to elucidate mechanisms of post-traumatic neurodegeneration.
RESUMEN
We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and 1H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The 1H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized 1H-MRS is improved significantly in the presence of the array. Comparison of in vivo 1H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for 1H-MRS and MRI applications, specifically at 7 T, where 1H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human 1H-MRS and MRI in the regions with lower transmit efficiency.
RESUMEN
Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.
Asunto(s)
Médula Cervical , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Imagen Eco-Planar/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiologíaRESUMEN
IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or organ dysfunction after the acute phase of infection, termed Post-Acute Sequelae of SARS-CoV-2 (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are poorly understood. The objectives of the Researching COVID to Enhance Recovery (RECOVER) tissue pathology study (RECOVER-Pathology) are to: (1) characterize prevalence and types of organ injury/disease and pathology occurring with PASC; (2) characterize the association of pathologic findings with clinical and other characteristics; (3) define the pathophysiology and mechanisms of PASC, and possible mediation via viral persistence; and (4) establish a post-mortem tissue biobank and post-mortem brain imaging biorepository. METHODS: RECOVER-Pathology is a cross-sectional study of decedents dying at least 15 days following initial SARS-CoV-2 infection. Eligible decedents must meet WHO criteria for suspected, probable, or confirmed infection and must be aged 18 years or more at the time of death. Enrollment occurs at 7 sites in four U.S. states and Washington, DC. Comprehensive autopsies are conducted according to a standardized protocol within 24 hours of death; tissue samples are sent to the PASC Biorepository for later analyses. Data on clinical history are collected from the medical records and/or next of kin. The primary study outcomes include an array of pathologic features organized by organ system. Causal inference methods will be employed to investigate associations between risk factors and pathologic outcomes. DISCUSSION: RECOVER-Pathology is the largest autopsy study addressing PASC among US adults. Results of this study are intended to elucidate mechanisms of organ injury and disease and enhance our understanding of the pathophysiology of PASC.
Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Estudios Transversales , Síndrome Post Agudo de COVID-19 , Progresión de la Enfermedad , Factores de RiesgoRESUMEN
Background: Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods: Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results: All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions: All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
RESUMEN
BACKGROUND: The main advantage of ultra-high field (UHF) magnetic resonance neuroimaging is theincreased signal-to-noise ratio (SNR) compared with lower field strength imaging. However, the wavelength effect associated with UHF MRI results in radiofrequency (RF) inhomogeneity, compromising whole brain coverage for many commercial coils. Approaches to resolving this issue of transmit field inhomogeneity include the design of parallel transmit systems (PTx), RF pulse design, and applying passive RF shimming such as high dielectric materials. However, these methods have some drawbacks such as unstable material parameters of dielectric pads, high-cost, and complexity of PTx systems. Metasurfaces are artificial structures with a unique platform that can control the propagation of the electromagnetic (EM) waves, and they are very promising for engineering EM device. Implementation of meta-arrays enhancing MRI has been explored previously in several studies. PURPOSE: The aim of this study was to assess the effect of new meta-array technology on enhancing the brain MRI at 7T. A meta-array based on a hybrid structure consisting of an array of broadside-coupled split-ring resonators and high-permittivity materials was designed to work at the Larmor frequency of a 7 Tesla (7T) MRI scanner. When placed behind the head and neck, this construct improves the SNR in the region of the cerebellum,brainstem and the inferior aspect of the temporal lobes. METHODS: Numerical electromagnetic simulations were performed to optimize the meta-array design parameters and determine the RF circuit configuration. The resultant transmit-efficiency and signal sensitivity improvements were experimentally analyzed in phantoms followed by healthy volunteers using a 7T whole-body MRI scanner equipped with a standard one-channel transmit, 32-channel receive head coil. Efficacy was evaluated through acquisition with and without the meta-array using two basic sequences: gradient-recalled-echo (GRE) and turbo-spin-echo (TSE). RESULTS: Experimental phantom analysis confirmed two-fold improvement in the transmit efficiency and 1.4-fold improvement in the signal sensitivity in the target region. In vivo GRE and TSE images with the meta-array in place showed enhanced visualization in inferior regions of the brain, especially of the cerebellum, brainstem, and cervical spinal cord. CONCLUSION: Addition of the meta-array to commonly used MRI coils can enhance SNR to extend the anatomical coverage of the coil and improve overall MRI coil performance. This enhancement in SNR can be leveraged to obtain a higher resolution image over the same time slot or faster acquisition can be achieved with same resolution. Using this technique could improve the performance of existing commercial coils at 7T for whole brain and other applications.
Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Humanos , Encéfalo/diagnóstico por imagen , Tronco Encefálico , Cabeza , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido , Diseño de EquipoRESUMEN
Lifelong brain health consequences of traumatic brain injury (TBI) include the risk of neurodegenerative disease. Up to one-third of women experience intimate partner violence (IPV) in their lifetime, often with TBI, yet remarkably little is known about the range of autopsy neuropathologies encountered in IPV. We report a prospectively accrued case series from a single institution, the New York City Office of Chief Medical Examiner, evaluated in partnership with the Brain Injury Research Center of Mount Sinai, using a multimodal protocol comprising clinical history review, ex vivo imaging in a small subset, and comprehensive neuropathological assessment by established consensus protocols. Fourteen brains were obtained over 2 years from women with documented IPV (aged 3rd-8th decade; median, 4th) and complex histories including prior TBI in 6, nonfatal strangulation in 4, cerebrovascular, neurological, and/or psychiatric conditions in 13, and epilepsy in 7. At autopsy, all had TBI stigmata (old and/or recent). In addition, white matter regions vulnerable to diffuse axonal injury showed perivascular and parenchymal iron deposition and microgliosis in some subjects. Six cases had evidence of cerebrovascular disease (lacunes and/or chronic infarcts). Regarding neurodegenerative disease pathologies, Alzheimer disease neuropathologic change was present in a single case (8th decade), with no chronic traumatic encephalopathy neuropathologic change (CTE-NC) identified in any. Findings from this initial series then prompted similar exploration in an expanded case series of 70 archival IPV cases (aged 2nd-9th decade; median, 4th) accrued from multiple international institutions. In this secondary case series, we again found evidence of vascular and white matter pathologies. However, only limited neurodegenerative proteinopathies were encountered in the oldest subjects, none meeting consensus criteria for CTE-NC. These observations from this descriptive exploratory study reinforce a need to consider broad co-morbid and neuropathological substrates contributing to brain health outcomes in the context of IPV, some of which may be potentially modifiable.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Violencia de Pareja , Enfermedades Neurodegenerativas , Humanos , Femenino , Encefalopatía Traumática Crónica/patología , Encéfalo/patología , Violencia de Pareja/psicologíaRESUMEN
BACKGROUND CONTEXT: Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. PURPOSE: Establish in vivo rat lumbar EP microfracture model and assess crosstalk between IVD, vertebra and spinal cord. STUDY DESIGN/SETTING: In vivo rat EP microfracture injury model with characterization of IVD degeneration, vertebral remodeling, spinal cord substance P (SubP), and pain-related behaviors. METHODS: EP-injury was induced in 5 month-old male Sprague-Dawley rats L4-5 and L5-6 IVDs by puncturing through the cephalad vertebral body and EP into the NP of the IVDs followed by intradiscal injections of TNFα (n=7) or PBS (n=6), compared with Sham (surgery without EP-injury, n=6). The EP-injury model was assessed for IVD height, histological degeneration, pain-like behaviors (hindpaw von Frey and forepaw grip test), lumbar spine MRI and µCT, and spinal cord SubP. RESULTS: Surgically-induced EP microfracture with PBS and TNFα injection induced IVD degeneration with decreased IVD height and MRI T2 signal, vertebral remodeling, and secondary damage to cartilage EP adjacent to the injury. Both EP injury groups showed MC-like changes around defects with hypointensity on T1-weighted and hyperintensity on T2-weighted MRI, suggestive of MC type 1. EP injuries caused significantly decreased paw withdrawal threshold, reduced axial grip, and increased spinal cord SubP, suggesting axial spinal discomfort and mechanical hypersensitivity and with spinal cord sensitization. CONCLUSIONS: Surgically-induced EP microfracture can cause crosstalk between IVD, vertebra, and spinal cord with chronic pain-like conditions. CLINICAL SIGNIFICANCE: This rat EP microfracture model was validated to induce broad spinal degenerative changes that may be useful to improve understanding of MC-like changes and for therapeutic screening.
Asunto(s)
Dolor Crónico , Fracturas por Estrés , Degeneración del Disco Intervertebral , Disco Intervertebral , Ratas , Masculino , Animales , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/complicaciones , Disco Intervertebral/patología , Factor de Necrosis Tumoral alfa , Ratas Sprague-Dawley , Fracturas por Estrés/complicaciones , Fracturas por Estrés/patología , Vértebras Lumbares/patología , Médula Espinal/patologíaRESUMEN
PURPOSE: Although functional MRI is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0. Increasing field strength enables higher spatial resolution and improved sensitivity to BOLD signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first stimulus task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D EPI protocols, as they differ in sensitivity to spatial and temporal B0 inhomogeneity. METHODS: The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. For each protocol, the BOLD response to thirteen 10-second noxious thermal stimuli applied to the right thumb was acquired in a 10-minute fMRI run. Image quality, temporal SNR, and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. RESULTS: Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. CONCLUSION: Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment.
RESUMEN
BACKGROUND CONTEXT : Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. PURPOSE : Establish in vivo rat lumbar EP microfracture model with painful phenotype. STUDY DESIGN/SETTING : In vivo rat study to characterize EP-injury model with characterization of IVD degeneration, vertebral bone marrow remodeling, spinal cord sensitization, and pain-related behaviors. METHODS : EP-driven degeneration was induced in 5-month-old male Sprague-Dawley rats L4-5 and L5-6 IVDs through the proximal vertebral body injury with intradiscal injections of TNFα (n=7) or PBS (n=6), compared to Sham (surgery without EP-injury, n=6). The EP-driven model was assessed for IVD height, histological degeneration, pain-like behaviors (hindpaw von Frey and forepaw grip test), lumbar spine MRI and µCT analyses, and spinal cord substance P (SubP). RESULTS : EP injuries induced IVD degeneration with decreased IVD height and MRI T2 values. EP injury with PBS and TNFα both showed MC type1-like changes on T1 and T2-weighted MRI, trabecular bone remodeling on µCT, and damage in cartilage EP adjacent to the injury. EP injuries caused significantly decreased paw withdrawal threshold and reduced grip forces, suggesting increased pain sensitivity and axial spinal discomfort. Spinal cord dorsal horn SubP was significantly increased, indicating spinal cord sensitization. CONCLUSIONS : EP microfracture can induce crosstalk between vertebral bone marrow, IVD and spinal cord with chronic pain-like conditions. CLINICAL SIGNIFICANCE : This rat EP microfracture model of IVD degeneration was validated to induce MC-like changes and pain-like behaviors that we hope will be useful to screen therapies and improve treatment for EP-drive pain.
RESUMEN
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismos Cerrados de la Cabeza , Sustancia Blanca , Animales , Ratones , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión Tensora , Lesiones Traumáticas del Encéfalo/patología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Oligodendroglía , Atrofia/patología , Traumatismos Cerrados de la Cabeza/patologíaRESUMEN
The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types according to their morphology and expression of molecular markers, yielding reliable cell counts with most coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data contribute to a growing body of knowledge on the morphological and neurochemical properties of the dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and translational assessment of pathological processes in the dolphin brain in the future.
RESUMEN
PURPOSE: The spinal cord contains sensorimotor neural circuits of scientific and clinical interest. However, spinal cord functional MRI (fMRI) is significantly more technically demanding than brain fMRI, due primarily to its proximity to the lungs. Accelerated echo-planar imaging (EPI) at 7 T is particularly vulnerable to k-space phase inconsistencies induced by motion or B0 fluctuation, during either autocalibration signal (ACS) or time-series acquisition. For 7 T brain fMRI, sensitivity to motion and B0 fluctuation can be reduced using a re-ordered segmented EPI ACS based on the fast low-angle excitation echo-planar technique (FLEET). However, respiration-induced B0 fluctuations (exceeding 100 Hz at C7) are greater, and fewer k-space lines per slice are required for cervical spinal cord fMRI at 7 T, necessitating a separate evaluation of ACS methods. METHODS: We compared 24-line single-shot EPI with 48-line two-shot segmented EPI, two-shot FLEET, and gradient echo (GRE)-based ACS acquisition methods, performed under various physiological conditions, in terms of temporal signal-to-noise ratio and prevalence of artifacts in generalized autocalibrating partially parallel acquisition (GRAPPA)-accelerated EPI of the cervical spinal cord at 7 T. RESULTS: Segmented EPI and FLEET ACS produce images with nearly identical patterns of severe image artifacts. GRE and single-shot EPI ACS consistently produce images free from significant artifacts, and temporal signal-to-noise ratio is significantly greater for GRE ACS, particularly in lower slices where through-slice dephasing is most severe. CONCLUSIONS: GRE and single-shot EPI-ACS acquisition methods, which are robust to respiration-induced phase errors between k-space segments, produce images with fewer and less severe artifacts than either FLEET or conventionally segmented EPI for accelerated EPI of the cervical spinal cord at 7 T.
Asunto(s)
Médula Cervical , Imagen Eco-Planar , Artefactos , Encéfalo , Médula Cervical/diagnóstico por imagen , Imagen Eco-Planar/métodos , Relación Señal-Ruido , Médula Espinal/diagnóstico por imagenRESUMEN
Two years into the COVID-19 pandemic, there are few published accounts of postmortem SARS-CoV-2 pathology in children. We report 8 such cases (4 infants aged 7-36 weeks, 4 children aged 5-15 years). Four underwent ex vivo magnetic resonance neuroimaging, to assist in identification of subtle lesions related to vascular compromise. All infants were found unresponsive (3 in unsafe sleeping conditions); all but 1 had recent rhinitis and/or influenza-like illness (ILI) in the family; 1 had history of sickle cell disease. Ex vivo neuroimaging in 1 case revealed white matter (WM) signal hyperintensity and diffuse exaggeration of perivascular spaces, corresponding microscopically to WM mineralization. Neurohistology in the remaining 3 infants variably encompassed WM gliosis and mineralization; brainstem gliosis; perivascular vacuolization; perivascular lymphocytes and brainstem microglia. One had ectopic hippocampal neurons (with pathogenic variant in DEPDC5). Among the children, 3 had underlying conditions (e.g., obesity, metabolic disease, autism) and all presented with ILI. Three had laboratory testing suggesting multisystem inflammatory syndrome (MIS-C). Two were hospitalized for critical care including mechanical ventilation and extracorporeal membrane oxygenation (ECMO); one (co-infected with adenovirus) developed right carotid stroke ipsilateral to the ECMO cannula and the other required surgery for an ingested foreign body. Autopsy findings included: acute lung injury in 3 (1 with microthrombi); and one each with diabetic ketoacidosis and cardiac hypertrophy; coronary and cerebral arteritis and aortitis, resembling Kawasaki disease; and neuronal storage and enlarged fatty liver. All 4 children had subtle meningoencephalitis, focally involving the brainstem. On ex vivo neuroimaging, 1 had focal pontine susceptibility with corresponding perivascular inflammation/expanded perivascular spaces on histopathology. Results suggest SARS-CoV-2 in infants may present as sudden unexpected infant death, while in older children, signs and symptoms point to severe disease. Underlying conditions may predispose to fatal outcomes. As in adults, the neuropathologic changes may be subtle, with vascular changes such as perivascular vacuolization and gliosis alongside sparse perivascular lymphocytes. Detection of subtle vascular pathology is enhanced by ex vivo neuroimaging. Additional analysis of the peripheral/autonomic nervous system and investigation of co-infection in children with COVID-19 is necessary to understand risk for cardiovascular collapse/sudden death.
RESUMEN
BACKGROUND: A key outcome for spinal cord stimulation for neurorehabilitation after injury is to strengthen corticospinal system control of the arm and hand. Non-invasive, compared with invasive, spinal stimulation minimizes risk but depends on muscle-specific actions for restorative functions. OBJECTIVE: We developed a large-animal (cat) model, combining computational and experimental techniques, to characterize neuromodulation with transcutaneous spinal direct current stimulation (tsDCS) for facilitation of corticospinal motor drive to specific forelimb muscles. METHODS: Acute modulation of corticospinal function by tsDCS was measured using motor cortex-evoked muscle potentials (MEPs). The effects of current intensity, polarity (cathodal, anodal), and electrode position on specific forelimb muscle (biceps vs extensor carpi radialis, ECR) MEP modulation were examined. Locations of a key target, the motoneuron pools, were determined using neuronal tracing. A high-resolution anatomical (MRI and CT) model was developed for computational simulation of spinal current flow during tsDCS. RESULTS: Effects of tsDCS on corticospinal excitability were robust and immediate, therefore supporting MEPs as a sensitive marker of tsDCS targeting. Varying cathodal/anodal current intensity modulated MEP enhancement/suppression, with higher cathodal sensitivity. Muscle-specificity depended on cathode position; the rostral position preferentially augmented biceps responses and the caudal position, ECR responses. Precise anatomical current-flow modeling, supplemented with target motor pool distributions, can explain tsDCS focality on muscle groups. CONCLUSION: Anatomical current-flow modeling with physiological validation based on MEPs provides a framework to optimize muscle-specific tsDCS interventions. tsDCS targeting of representative motor pools enables muscle- and response-specific neuromodulation of corticospinal motor drive.
Asunto(s)
Rehabilitación Neurológica , Estimulación de la Médula Espinal , Animales , Potenciales Evocados Motores/fisiología , Humanos , Músculo Esquelético/fisiología , Médula Espinal/fisiología , Estimulación de la Médula Espinal/métodos , Extremidad SuperiorRESUMEN
PURPOSE: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter. METHODS: In vivo data of the cervical spinal cord were collected from nine different imaging centers. Data processing consisted of automatically segmenting the spinal cord and its gray matter and co-registering back-to-back scans. We computed the SNR using two methods (SNR_single using a single scan and SNR_diff using the difference between back-to-back scans) and the white/gray matter contrast-to-noise ratio per unit time. Synthetic phantom data were generated to evaluate the metrics performance. Experienced radiologists qualitatively scored the images. We ran the same processing on an open-access multicenter data set of the spinal cord MRI (N = 267 participants). RESULTS: Qualitative assessments indicated comparable image quality for 3T and 7T scans. Spatial resolution was higher at higher field strength, and image quality at 1.5 T was found to be moderate to low. The proposed quantitative metrics were found to be robust to underlying changes to the SNR and contrast; however, the SNR_single method lacked accuracy when there were excessive partial-volume effects. CONCLUSION: We propose quality assessment criteria and metrics for gray-matter visualization and apply them to different protocols. The proposed criteria and metrics, the analyzed protocols, and our open-source code can serve as a benchmark for future optimization of spinal cord gray-matter imaging protocols.
Asunto(s)
Médula Cervical , Sustancia Blanca , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto , Médula Espinal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagenRESUMEN
Sonicating deep brain regions with pulsed focused ultrasound using magnetic resonance imaging-guided neuronavigation single-element piezoelectric transducers is a new area of exploration for neuromodulation. Upper cranial nerves such as the trigeminal nerve and other nerves responsible for sensory/motor functions in the head may be potential targets for ultrasound pain therapy. The location of upper cranial nerves close to the skull base poses additional challenges when compared with conventional cortical or middle brain targets. In the work described here, a series of computational and empirical testing methods using human skull specimens were conducted to assess the feasibility of sonicating the trigeminal pathway near the sphenoid bone region. The results indicate a transducer with a focal length of 120 mm and diameter of 85 mm (350 kHz) can deliver sonication to upper cranial nerve regions with spatial accuracy comparable to that of focused ultrasound brain targets used in previous human studies. Temperature measurements in cortical bone and in the skull base with embedded thermocouples yield evidence of minimal bone heating. Conventional pulse parameters were found to cause reverberation interference patterns near the cranial floor; therefore, changes in pulse cycles and pulse repetition frequency were examined for reducing standing waves. Limitations and considerations for conducting ultradeep focal targeting in human applications are discussed.
Asunto(s)
Encéfalo , Sonicación , Nervios Craneales , Estudios de Factibilidad , Humanos , Cráneo/diagnóstico por imagen , Cráneo/cirugíaRESUMEN
Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies. Numerous practical barriers arise when applying perfusion fixation in brain banking settings, including the large mass of the organ, degradation of vascular integrity and patency prior to the start of the procedure, and differing investigator goals sometimes necessitating part of the brain to be frozen. As a result, there is a critical need to establish a perfusion fixation procedure in brain banking that is flexible and scalable. This technical report describes our approach to developing an ex situ perfusion fixation protocol. We discuss the challenges encountered and lessons learned while implementing this procedure. Routine morphological staining and RNA in situ hybridization data show that the perfused brains have well-preserved tissue cytoarchitecture and intact biomolecular signal. However, it remains uncertain whether this procedure leads to improved histology quality compared to immersion fixation. Additionally, ex vivo magnetic resonance imaging (MRI) data suggest that the perfusion fixation protocol may introduce imaging artifacts in the form of air bubbles in the vasculature. We conclude with further research directions to investigate the use of perfusion fixation as a rigorous and reproducible alternative to immersion fixation for the preparation of postmortem human brains.
RESUMEN
In recent years, new human magnetic resonance imaging systems operating at static magnetic fields strengths of 7 Tesla or higher have become available, providing better signal sensitivity compared with lower field strengths. However, imaging human-sized objects at such high field strength and associated precession frequencies is limited due to the technical challenges associated with the wavelength effect, which substantially disturb the transmit field uniformity over the human body when conventional coils are used. Here we report a novel passive inductively-coupled radiofrequency resonator array design with a simple structure that works in conjunction with conventional coils and requires only to be tuned to the scanner's operating frequency. We show that inductive-coupling between the resonator array and the coil improves the transmit efficiency and signal sensitivity in the targeted region. The simple structure, flexibility, and cost-efficiency make the proposed array design an attractive approach for altering the transmit field distribution specially at high field systems, where the wavelength is comparable with the tissue size.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Ondas de Radio , Adulto , Ingeniería Biomédica , Simulación por Computador , Medios de Contraste , Electricidad , Radiación Electromagnética , Diseño de Equipo , Femenino , Calor , Humanos , Campos Magnéticos , Magnetismo , Masculino , Persona de Mediana Edad , Nanotecnología , Fantasmas de Imagen , Procesamiento de Señales Asistido por ComputadorRESUMEN
BACKGROUND: Trigeminal Neuralgia (TN) is a chronic neurological disease that is strongly associated with neurovascular compression (NVC) of the trigeminal nerve near its root entry zone. The trigeminal nerve at the site of NVC has been extensively studied but limbic structures that are potentially involved in TN have not been adequately characterized. Specifically, the hippocampus is a stress-sensitive region which may be structurally impacted by chronic TN pain. As the center of the emotion-related network, the amygdala is closely related to stress regulation and may be associated with TN pain as well. The thalamus, which is involved in the trigeminal sensory pathway and nociception, may play a role in pain processing of TN. The objective of this study was to assess structural alterations in the trigeminal nerve and subregions of the hippocampus, amygdala, and thalamus in TN patients using ultra-high field MRI and examine quantitative differences in these structures compared with healthy controls. METHODS: Thirteen TN patients and 13 matched controls were scanned at 7-Tesla MRI with high resolution, T1-weighted imaging. Nerve cross sectional area (CSA) was measured and an automated algorithm was used to segment hippocampal, amygdaloid, and thalamic subregions. Nerve CSA and limbic structure subnuclei volumes were compared between TN patients and controls. RESULTS: CSA of the posterior cisternal nerve on the symptomatic side was smaller in patients (3.75 mm2) compared with side-matched controls (5.77 mm2, p = 0.006). In TN patients, basal subnucleus amygdala volume (0.347 mm3) was reduced on the symptomatic side compared with controls (0.401 mm3, p = 0.025) and the paralaminar subnucleus volume (0.04 mm3) was also reduced on the symptomatic side compared with controls (0.05 mm3, p = 0.009). The central lateral thalamic subnucleus was larger in TN patients on both the symptomatic side (0.033 mm3) and asymptomatic side (0.035 mm3), compared with the corresponding sides in controls (0.025 mm3 on both sides, p = 0.048 and p = 0.003 respectively). The inferior and lateral pulvinar thalamic subnuclei were both reduced in TN patients on the symptomatic side (0.2 mm3 and 0.17 mm3 respectively) compared to controls (0.23 mm3, p = 0.04 and 0.18 mm3, p = 0.04 respectively). No significant findings were found in the hippocampal subfields analyzed. CONCLUSIONS: These findings, generated through a highly sensitive 7 T MRI protocol, provide compelling support for the theory that TN neurobiology is a complex amalgamation of local structural changes within the trigeminal nerve and structural alterations in subnuclei of limbic structures directly and indirectly involved in nociception and pain processing.