Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Influenza Other Respir Viruses ; 15(6): 767-777, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323380

RESUMEN

BACKGROUND: The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. OBJECTIVES: There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories-the most relevant age class. METHODS: We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. RESULTS: All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). CONCLUSIONS: Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Brotes de Enfermedades , Patos , Humanos , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología
2.
BMC Biol ; 18(1): 14, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050986

RESUMEN

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Asunto(s)
Coturnix/genética , Genoma , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/genética , Conducta Social , Animales , Estaciones del Año
3.
BMC Genomics ; 16: 574, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238195

RESUMEN

BACKGROUND: Chickens are susceptible to infection with a limited number of Influenza A viruses and are a potential source of a human influenza pandemic. In particular, H5 and H7 haemagglutinin subtypes can evolve from low to highly pathogenic strains in gallinaceous poultry. Ducks on the other hand are a natural reservoir for these viruses and are able to withstand most avian influenza strains. RESULTS: Transcriptomic sequencing of lung and ileum tissue samples from birds infected with high (H5N1) and low (H5N2) pathogenic influenza viruses has allowed us to compare the early host response to these infections in both these species. Chickens (but not ducks) lack the intracellular receptor for viral ssRNA, RIG-I and the gene for an important RIG-I binding protein, RNF135. These differences in gene content partly explain the differences in host responses to low pathogenic and highly pathogenic avian influenza virus in chicken and ducks. We reveal very different patterns of expression of members of the interferon-induced transmembrane protein (IFITM) gene family in ducks and chickens. In ducks, IFITM1, 2 and 3 are strongly up regulated in response to highly pathogenic avian influenza, where little response is seen in chickens. Clustering of gene expression profiles suggests IFITM1 and 2 have an anti-viral response and IFITM3 may restrict avian influenza virus through cell membrane fusion. We also show, through molecular phylogenetic analyses, that avian IFITM1 and IFITM3 genes have been subject to both episodic and pervasive positive selection at specific codons. In particular, avian IFITM1 showed evidence of positive selection in the duck lineage at sites known to restrict influenza virus infection. CONCLUSIONS: Taken together these results support a model where the IFITM123 protein family and RIG-I all play a crucial role in the tolerance of ducks to highly pathogenic and low pathogenic strains of avian influenza viruses when compared to the chicken.


Asunto(s)
Pollos/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Interferones/genética , Animales , Pollos/virología , Patos/genética , Patos/virología , Humanos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Inductores de Interferón/metabolismo , Interferones/inmunología , Pandemias , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA