Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39222051

RESUMEN

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.


Asunto(s)
Homeostasis , Espermátides , Espermatogénesis , Masculino , Animales , Espermatogénesis/genética , Ratones , Espermátides/metabolismo , Testículo/metabolismo , Histonas/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Epigénesis Genética , Infertilidad Masculina/genética , Ratones Endogámicos C57BL , Meiosis/genética , Células Madre Germinales Adultas/metabolismo , Ratones Noqueados , Inmunidad Innata/genética , Espermatogonias/metabolismo
2.
J Oral Biosci ; 66(3): 530-538, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942194

RESUMEN

OBJECTIVES: This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS: scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS: Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasa 1 , Papila Dental , Odontoblastos , Análisis de la Célula Individual , Germen Dentario , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Germen Dentario/metabolismo , Germen Dentario/citología , Germen Dentario/embriología , Papila Dental/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Odontoblastos/citología , Odontoblastos/metabolismo , Odontoblastos/efectos de los fármacos , Análisis de Secuencia de ARN/métodos , Odontogénesis/genética , Odontogénesis/efectos de los fármacos , Transcriptoma , Inmunohistoquímica , Redes Reguladoras de Genes/efectos de los fármacos
3.
Mol Metab ; 84: 101954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718896

RESUMEN

OBJECTIVE: The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS: We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS: The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS: This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.


Asunto(s)
Corteza Suprarrenal , Envejecimiento , Análisis de la Célula Individual , Transcriptoma , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Análisis de la Célula Individual/métodos , Corteza Suprarrenal/metabolismo , Masculino , Perfilación de la Expresión Génica/métodos , Anciano , Adulto , Femenino , Persona de Mediana Edad , Macrófagos/metabolismo
4.
EBioMedicine ; 103: 105087, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570222

RESUMEN

BACKGROUND: The human adrenal cortex consists of three functionally and structurally distinct layers; zona glomerulosa, zona fasciculata (zF), and zona reticularis (zR), and produces adrenal steroid hormones in a layer-specific manner; aldosterone, cortisol, and adrenal androgens, respectively. Cortisol-producing adenomas (CPAs) occur mostly as a result of somatic mutations associated with the protein kinase A pathway. However, how CPAs develop after adrenocortical cells acquire genetic mutations, remains poorly understood. METHODS: We conducted integrated approaches combining the detailed histopathologic studies with genetic, RNA-sequencing, and spatially resolved transcriptome (SRT) analyses for the adrenal cortices adjacent to human adrenocortical tumours. FINDINGS: Histopathological analysis revealed an adrenocortical nodular structure that exhibits the two-layered zF- and zR-like structure. The nodular structures harbour GNAS somatic mutations, known as a driver mutation of CPAs, and confer cell proliferative and autonomous steroidogenic capacities, which we termed steroids-producing nodules (SPNs). RNA-sequencing coupled with SRT analysis suggests that the expansion of the zF-like structure contributes to the formation of CPAs, whereas the zR-like structure is characterised by a macrophage-mediated immune response. INTERPRETATION: We postulate that CPAs arise from a precursor lesion, SPNs, where two distinct cell populations might contribute differently to adrenocortical tumorigenesis. Our data also provide clues to the molecular mechanisms underlying the layered structures of human adrenocortical tissues. FUNDING: KAKENHI, The Uehara Memorial Foundation, Daiwa Securities Health Foundation, Kaibara Morikazu Medical Science Promotion Foundation, Secom Science and Technology Foundation, ONO Medical Research Foundation, and Japan Foundation for Applied Enzymology.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Hidrocortisona , Humanos , Hidrocortisona/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/patología , Mutación , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/patología , Perfilación de la Expresión Génica , Transcriptoma , Esteroides/biosíntesis , Esteroides/metabolismo , Adenoma/patología , Adenoma/metabolismo , Adenoma/genética , Masculino , Femenino , Persona de Mediana Edad
5.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473784

RESUMEN

Nearly all cervical cancer cases are caused by infection with high-risk human papillomavirus (HR-HPV) types. The mechanism of cervical cell transformation is related to the powerful action of viral oncoproteins and cellular gene alterations. Transcriptomic data from cervical cancer and normal cervical cells were utilized to identify upregulated genes and their associated pathways. The laminin subunit beta-3 (LAMB3) mRNAwas overexpressed in cervical cancer and was chosen for functional analysis. The LAMB3 was predominantly expressed in the extracellular region and the plasma membrane, which play a role in protein binding and cell adhesion molecule binding, leading to cell migration and tissue development. LAMB3 was found to be implicated in the pathway in cancer and the PI3K-AKT signaling pathway. LAMB3 knockdown decreased cell migration, invasion, anchorage-dependent and anchorage-independent cell growth and increased the number of apoptotic cells. These effects were linked to a decrease in protein levels involved in the PI3K-AKT signaling pathway and an increase in p53 protein. This study demonstrated that LAMB3 could promote cervical cancer cell migration, invasion and survival.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Papillomavirus Humano 16/metabolismo , Regulación hacia Abajo , Carcinógenos , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Nature ; 627(8002): 221-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383791

RESUMEN

Epigenomes enable the rectification of disordered cancer gene expression, thereby providing new targets for pharmacological interventions. The clinical utility of targeting histone H3 lysine trimethylation (H3K27me3) as an epigenetic hallmark has been demonstrated1-7. However, in actual therapeutic settings, the mechanism by which H3K27me3-targeting therapies exert their effects and the response of tumour cells remain unclear. Here we show the potency and mechanisms of action and resistance of the EZH1-EZH2 dual inhibitor valemetostat in clinical trials of patients with adult T cell leukaemia/lymphoma. Administration of valemetostat reduced tumour size and demonstrated durable clinical response in aggressive lymphomas with multiple genetic mutations. Integrative single-cell analyses showed that valemetostat abolishes the highly condensed chromatin structure formed by the plastic H3K27me3 and neutralizes multiple gene loci, including tumour suppressor genes. Nevertheless, subsequent long-term treatment encounters the emergence of resistant clones with reconstructed aggregate chromatin that closely resemble the pre-dose state. Acquired mutations at the PRC2-compound interface result in the propagation of clones with increased H3K27me3 expression. In patients free of PRC2 mutations, TET2 mutation or elevated DNMT3A expression causes similar chromatin recondensation through de novo DNA methylation in the H3K27me3-associated regions. We identified subpopulations with distinct metabolic and gene translation characteristics implicated in primary susceptibility until the acquisition of the heritable (epi)mutations. Targeting epigenetic drivers and chromatin homeostasis may provide opportunities for further sustained epigenetic cancer therapies.


Asunto(s)
Histonas , Linfoma , Adulto , Humanos , Histonas/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Metilación , Cromatina/genética
7.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37994784

RESUMEN

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Asunto(s)
Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Secuencia de Bases , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN/métodos
8.
Cell Death Dis ; 14(12): 815, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081808

RESUMEN

Given the lack of therapeutic targets, the conventional approach for managing triple-negative breast cancer (TNBC) involves the utilization of cytotoxic chemotherapeutic agents. However, most TNBCs acquire resistance to chemotherapy, thereby lowering the therapeutic outcome. In addition to oncogenic mutations in TNBC, microenvironment-induced mechanisms render chemoresistance more complex and robust in vivo. Here, we aimed to analyze whether depletion of Munc18-1 interacting protein 3 (Mint3), which activates hypoxia-inducible factor 1 (HIF-1) during normoxia, sensitizes TNBC to chemotherapy. We found that Mint3 promotes the chemoresistance of TNBC in vivo. Mint3 depletion did not affect the sensitivity of human TNBC cell lines to doxorubicin and paclitaxel in vitro but sensitized tumors of these cells to chemotherapy in vivo. Transcriptome analyses revealed that the Mint3-HIF-1 axis enhanced heat shock protein 70 (HSP70) expression in tumors of TNBC cells. Administering an HSP70 inhibitor enhanced the antitumor activity of doxorubicin in TNBC tumors, similar to Mint3 depletion. Mint3 expression was also correlated with HSP70 expression in human TNBC specimens. Mechanistically, Mint3 depletion induces glycolytic maladaptation to the tumor microenvironment in TNBC tumors, resulting in energy stress. This energy stress by Mint3 depletion inactivated heat shock factor 1 (HSF-1), the master regulator of HSP expression, via the AMP-activated protein kinase/mechanistic target of the rapamycin pathway following attenuated HSP70 expression. In conclusion, Mint3 is a unique regulator of TNBC chemoresistance in vivo via metabolic adaptation to the tumor microenvironment, and a combination of Mint3 inhibition and chemotherapy may be a good strategy for TNBC treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
9.
Nat Commun ; 14(1): 8375, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102134

RESUMEN

The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.


Asunto(s)
Adenocarcinoma in Situ , Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Pulmón/patología , Adenocarcinoma in Situ/genética , Mutación , Microambiente Tumoral
10.
Data Brief ; 48: 109071, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37066092

RESUMEN

Heterosigma akashiwo is a eukaryotic, cosmopolitan, and unicellular alga (class: Raphidophyceae), and produces fish-killing blooms. There is a substantial scientific and practical interest in its ecophysiological characteristics that determine bloom dynamics and its adaptation to broad climate zones. A well-annotated genomic/genetic sequence information enables researchers to characterize organisms using modern molecular technology. In the present study, we conducted H. akashiwo RNA sequencing, a de novo transcriptome assembly of 84,693,530 high-quality deduplicated short-read sequences. Obtained RNA reads were assembled by Trinity assembler and 144,777 contigs were identified with N50 values of 1085. Total 60,877 open reading frames with the length of 150 bp or greater were predicted. For further analyses, top Gene Ontology terms, pfam hits, and blast hits were annotated for all the predicted genes. The raw data were deposited in the NCBI SRA database (BioProject PRJDB6241 and PRJDB15108), and the assemblies are available in NCBI TSA database (ICRV01). The annotation information can be obtained in Dryad and can be accessed via doi: 10.5061/dryad.m0cfxpp56.

11.
Cell Rep ; 42(4): 112276, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965484

RESUMEN

Although the skeleton is essential for locomotion, endocrine functions, and hematopoiesis, the molecular mechanisms of human skeletal development remain to be elucidated. Here, we introduce an integrative method to model human skeletal development by combining in vitro sclerotome induction from human pluripotent stem cells and in vivo endochondral bone formation by implanting the sclerotome beneath the renal capsules of immunodeficient mice. Histological and scRNA-seq analyses reveal that the induced bones recapitulate endochondral ossification and are composed of human skeletal cells and mouse circulatory cells. The skeletal cell types and their trajectories are similar to those of human embryos. Single-cell multiome analysis reveals dynamic changes in chromatin accessibility associated with multiple transcription factors constituting cell-type-specific gene-regulatory networks (GRNs). We further identify ZEB2, which may regulate the GRNs in human osteogenesis. Collectively, these results identify components of GRNs in human skeletal development and provide a valuable model for its investigation.


Asunto(s)
Multiómica , Células Madre Pluripotentes , Humanos , Ratones , Animales , Diferenciación Celular , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes/metabolismo
12.
Cell Oncol (Dordr) ; 46(2): 409-421, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36538240

RESUMEN

PURPOSE: Depending on its histological subtype, salivary gland carcinoma (SGC) may have a poor prognosis. Due to the scarcity of preclinical experimental models, its molecular biology has so far remained largely unknown, hampering the development of new treatment modalities for patients with these malignancies. The aim of this study was to generate experimental human SGC models of multiple histological subtypes using patient-derived xenograft (PDX) and organoid culture techniques. METHODS: Tumor specimens from surgically resected SGCs were processed for the preparation of PDXs and patient-derived organoids (PDOs). Specimens from SGC PDXs were also processed for PDX-derived organoid (PDXO) generation. In vivo tumorigenicity was assessed using orthotopic transplantation of SGC organoids. The pathological characteristics of each model were compared to those of the original tumors using immunohistochemistry. RNA-seq was used to analyze the genetic traits of our models. RESULTS: Three series of PDOs, PDXs and PDXOs of salivary duct carcinomas, one series of PDOs, PDXs and PDXOs of mucoepidermoid carcinomas and PDXs of myoepithelial carcinomas were successfully generated. We found that PDXs and orthotopic transplants from PDOs/PDXOs showed similar histological features as the original tumors. Our models also retained their genetic traits, i.e., transcription profiles, genomic variants and fusion genes of the corresponding histological subtypes. CONCLUSION: We report the generation of SGC PDOs, PDXs and PDXOs of multiple histological subtypes, recapitulating the histological and genetical characteristics of the original tumors. These experimental SGC models may serve as a useful resource for the development of novel therapeutic strategies and for investigating the molecular mechanisms underlying the development of these malignancies.


Asunto(s)
Neoplasias de las Glándulas Salivales , Animales , Humanos , Trasplante Heterólogo , Modelos Animales de Enfermedad , Fenotipo , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Organoides/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Circulation ; 147(3): 223-238, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36503256

RESUMEN

BACKGROUND: Because adult cardiomyocytes have little regenerative capacity, resident cardiac fibroblasts (CFs) synthesize extracellular matrix after myocardial infarction (MI) to form fibrosis, leading to cardiac dysfunction and heart failure. Therapies that can regenerate the myocardium and reverse fibrosis in chronic MI are lacking. The overexpression of cardiac transcription factors, including Mef2c/Gata4/Tbx5/Hand2 (MGTH), can directly reprogram CFs into induced cardiomyocytes (iCMs) and improve cardiac function under acute MI. However, the ability of in vivo cardiac reprogramming to repair chronic MI with established scars is undetermined. METHODS: We generated a novel Tcf21iCre/reporter/MGTH2A transgenic mouse system in which tamoxifen treatment could induce both MGTH and reporter expression in the resident CFs for cardiac reprogramming and fibroblast lineage tracing. We first tested the efficacy of this transgenic system in vitro and in vivo for acute MI. Next, we analyzed in vivo cardiac reprogramming and fusion events under chronic MI using Tcf21iCre/Tomato/MGTH2A and Tcf21iCre/mTmG/MGTH2A mice, respectively. Microarray and single-cell RNA sequencing were performed to determine the mechanism of cardiac repair by in vivo reprogramming. RESULTS: We confirmed the efficacy of transgenic in vitro and in vivo cardiac reprogramming for acute MI. In chronic MI, in vivo cardiac reprogramming converted ≈2% of resident CFs into iCMs, in which a majority of iCMs were generated by means of bona fide cardiac reprogramming rather than by fusion with cardiomyocytes. Cardiac reprogramming significantly improved myocardial contraction and reduced fibrosis in chronic MI. Microarray analyses revealed that the overexpression of MGTH activated cardiac program and concomitantly suppressed fibroblast and inflammatory signatures in chronic MI. Single-cell RNA sequencing demonstrated that resident CFs consisted of 7 subclusters, in which the profibrotic CF population increased under chronic MI. Cardiac reprogramming suppressed fibroblastic gene expression in chronic MI by means of conversion of profibrotic CFs to a quiescent antifibrotic state. MGTH overexpression induced antifibrotic effects partly by suppression of Meox1, a central regulator of fibroblast activation. CONCLUSIONS: These results demonstrate that cardiac reprogramming could repair chronic MI by means of myocardial regeneration and reduction of fibrosis. These findings present opportunities for the development of new therapies for chronic MI and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Animales , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Fibroblastos/metabolismo , Reprogramación Celular
14.
FASEB J ; 36(12): e22662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412518

RESUMEN

Recent studies have demonstrated that epigenetic modifications are deeply involved in neurogenesis; however, the precise mechanisms remain largely unknown. To determine the role of UTX (also known as KDM6A), a demethylase of histone H3K27, in neural development, we generated Utx-deficient mice in neural stem/progenitor cells (NSPCs). Since Utx is an X chromosome-specific gene, the genotypes are sex-dependent; female mice lose both Utx alleles (UtxΔ/Δ ), and male mice lose one Utx allele yet retain one Uty allele, the counterpart of Utx on the Y chromosome (UtxΔ/Uty ). We found that UtxΔ/Δ mice exhibited fetal ventriculomegaly and died soon after birth. Immunofluorescence staining and EdU labeling revealed a significant increase in NSPCs and a significant decrease in intermediate-progenitor and differentiated neural cells. Molecular analyses revealed the downregulation of pathways related to DNA replication and increased H3K27me3 levels around the transcription start sites in UtxΔ/Δ NSPCs. These results indicate that UTX globally regulates the expression of genes required for proper neural development in NSPCs, and UTX deficiency leads to impaired cell cycle exit, reduced differentiation, and neonatal death. Interestingly, although UtxΔ/Uty mice survived the postnatal period, most died of hydrocephalus, a clinical feature of Kabuki syndrome, a congenital anomaly involving UTX mutations. Our findings provide novel insights into the role of histone modifiers in neural development and suggest that UtxΔ/Uty mice are a potential disease model for Kabuki syndrome.


Asunto(s)
Histonas , Hidrocefalia , Animales , Femenino , Masculino , Ratones , Desarrollo Fetal , Histona Demetilasas/genética , Hidrocefalia/genética , Neurogénesis , Células Madre , Células-Madre Neurales
15.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36129760

RESUMEN

POEMS syndrome is a rare monoclonal plasma cell disorder, with unique symptoms distinct from those of other plasma cell neoplasms, including high serum VEGF levels. Because the prospective isolation of POEMS clones has not yet been successful, their real nature remains unclear. Herein, we performed single-cell RNA-Seq of BM plasma cells from patients with POEMS syndrome and identified POEMS clones that had Ig λ light chain (IGL) sequences (IGLV1-36, -40, -44, and -47) with amino acid changes specific to POEMS syndrome. The proportions of POEMS clones in plasma cells were markedly smaller than in patients with multiple myeloma (MM) and patients with monoclonal gammopathy of undetermined significance (MGUS). Single-cell transcriptomes revealed that POEMS clones were CD19+, CD138+, and MHC class IIlo, which allowed for their prospective isolation. POEMS clones expressed significantly lower levels of c-MYC and CCND1 than MM clones, accounting for their small size. VEGF mRNA was not upregulated in POEMS clones, directly indicating that VEGF is not produced by POEMS clones. These results reveal unique features of POEMS clones and enhance our understanding of the pathogenesis of POEMS syndrome.


Asunto(s)
Mieloma Múltiple , Síndrome POEMS , Humanos , Síndrome POEMS/diagnóstico , Síndrome POEMS/etiología , Síndrome POEMS/patología , Células Plasmáticas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Análisis de la Célula Individual , Cadenas lambda de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/metabolismo , Cadenas Ligeras de Inmunoglobulina/metabolismo , Células Clonales/patología , Mieloma Múltiple/patología , Aminoácidos/metabolismo
16.
Cell Rep ; 40(10): 111315, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070691

RESUMEN

The transcriptional regulator Runx2 (runt-related transcription factor 2) has essential but distinct roles in osteoblasts and chondrocytes in skeletal development. However, Runx2-mediated regulatory mechanisms underlying the distinctive programming of osteoblasts and chondrocytes are not well understood. Here, we perform an integrative analysis to investigate Runx2-DNA binding and chromatin accessibility ex vivo using neonatal osteoblasts and chondrocytes. We find that Runx2 engages with cell-type-distinct chromatin-accessible regions, potentially interacting with different combinations of transcriptional regulators, forming cell-type-specific hotspots, and potentiating chromatin accessibility. Genetic analysis and direct cellular reprogramming studies suggest that Runx2 is essential for establishment of chromatin accessibility in osteoblasts. Functional enhancer studies identify an Sp7 distal enhancer driven by Runx2-dependent binding and osteoblast-specific chromatin accessibility, contributing to normal osteoblast differentiation. Our findings provide a framework for understanding the regulatory landscape encompassing Runx2-mediated and cell-type-distinct enhancer networks that underlie the specification of osteoblasts.


Asunto(s)
Cromatina , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Osteoblastos/metabolismo , Osteogénesis
17.
Sci Rep ; 12(1): 15309, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097044

RESUMEN

When biologically interpretation of the data obtained from the single-cell RNA sequencing (scRNA-seq) analysis is attempted, additional information on the location of the single cells, behavior of the surrounding cells, and the microenvironment they generate, would be very important. We developed an inexpensive, high throughput application while preserving spatial organization, named "semibulk RNA-seq" (sbRNA-seq). We utilized a microfluidic device specifically designed for the experiments to encapsulate both a barcoded bead and a cell aggregate (a semibulk) into a single droplet. Using sbRNA-seq, we firstly analyzed mouse kidney specimens. In the mouse model, we could associate the pathological information with the gene expression information. We validated the results using spatial transcriptome analysis and found them highly consistent. When we applied the sbRNA-seq analysis to the human breast cancer specimens, we identified spatial interactions between a particular population of immune cells and that of cancer-associated fibroblast cells, which were not precisely represented solely by the single-cell analysis. Semibulk analysis may provide a convenient and versatile method, compared to a standard spatial transcriptome sequencing platform, to associate spatial information with transcriptome information.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
19.
Nat Microbiol ; 7(8): 1141-1150, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927448

RESUMEN

Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.


Asunto(s)
Heterópteros , Simbiosis , Animales , Escherichia coli/genética , Heterópteros/microbiología , Insectos , Mutación , Simbiosis/genética
20.
Cell Rep ; 40(9): 111260, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044861

RESUMEN

Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.


Asunto(s)
Diferenciación Celular , Células Dendríticas , Antígeno-1 Asociado a Función de Linfocito , Diferenciación Celular/genética , Células Dendríticas/metabolismo , Hematopoyesis , Humanos , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA