Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Mol Morphol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772955

RESUMEN

Vitamin D is an essential molecule for cellular homeostasis, playing a critical role in cell fate decisions including cell proliferation, differentiation, and viability. Accumulating evidence has revealed that expression of the vitamin D-metabolizing enzyme CYP24A1 is dysregulated in different types of human malignancy. CYP24A1 has been shown to be involved in the oncogenic property of a variety of carcinoma cells. However, the pathological relevance of CYP24A1 expression level in human oral malignancy remains to be clarified. In the present study, suppression of CYP24A1 expression in oral squamous cell carcinoma (OSCC) cells increased cell proliferation, invasive activity, colony formation efficacy, and tumor growth in vivo. In addition, knockout of CYP24A1 expression inhibited cell death induced by two different types of anticancer drugs, i.e., fluorouracil and cisplatin. Gene clustering by RNA-sequence analysis revealed that several signaling molecules associated with MYC are involved in CYP24A1-mediated oncogenic behaviors. Furthermore, decreased expression level of CYP24A1 was observed in 124/204 cases (61%) of OSCC and was shown to be associated with short relapse-free and overall survival periods. The results showed that a low expression level of CYP24A1 promotes the oncogenic activity of OSCC and is significantly associated with poor prognosis in patients with this malignancy.

2.
Cells ; 12(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37681892

RESUMEN

The current study's objective was to elucidate some currently unknown biological indicators to evaluate the biological nature of cancer-associated fibroblasts (CAFs). For this purpose, four different CAFs, CAFS1, CAFS2, SCC17F and MO-1000, were established using surgical specimens from oral squamous cell carcinomas (OSCC) with different clinical malignant stages (CAFS1 and CAFS2, T2N0M0, stage II; SCC17F and MO-1000, T4aN2bM0, stage IVA). Fibroblasts unrelated to cancer (non-CAFs) were also prepared and used as controls. Initially, confirmation that these four fibroblasts were indeed CAFs was obtained by their mRNA expression using positive and negative markers for the CAF or fibroblasts. To elucidate possible unknown biological indicators, these fibroblasts were subjected to a cellular metabolic analysis by a Seahorse bioanalyzer, in conjugation with 3D spheroid cultures of the cells and co-cultures with a pancreas ductal carcinoma cell line, MIA PaCa-2. The mitochondrial and glycolytic functions of human orbital fibroblasts (HOF) were nearly identical to those of Graves'-disease-related HOF (GOF). In contrast, the characteristics of the metabolic functions of these four CAFs were different from those of human conjunctival fibroblasts (HconF), a representative non-CAF. It is particularly noteworthy that CAFS1 and CAFS2 showed markedly reduced ratios for the rate of oxygen consumption to the extracellular acidification rate, suggesting that glycolysis was enhanced compared to mitochondrial respiration. Similarly, the physical aspects, their appearance and stiffness, of their 3D spheroids and fibroblasts that were induced effects based on the cellular metabolic functions of MIA PaCa-2 were also different between CAFs and non-CAFs, and their levels for CAFS1 or SCC17F were similar to those for CAFS2 or MO-1000 cells, respectively. The findings reported herein indicate that cellular metabolic functions and the physical characteristics of these types of 3D spheroids may be valuable and useful indicators for estimating potential biological diversity among various CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Humanos , Fibroblastos , Consumo de Oxígeno
3.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686580

RESUMEN

We previously showed that upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in vascular endothelial cells promotes tumor angiogenesis. In the present study, we aimed to clarify the role of stromal AEBP1/ACLP expression in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis showed that ACLP is abundantly expressed in cancer-associated fibroblasts (CAFs) in primary OSCC tissues and that upregulated expression of ACLP is associated with disease progression. Analysis using CAFs obtained from surgically resected OSCCs showed that the expression of AEBP1/ACLP in CAFs is upregulated by co-culture with OSCC cells or treatment with TGF-ß1, suggesting cancer-cell-derived TGF-ß1 induces AEBP1/ACLP in CAFs. Collagen gel contraction assays showed that ACLP contributes to the activation of CAFs. In addition, CAF-derived ACLP promotes migration, invasion, and in vivo tumor formation by OSCC cells. Notably, tumor stromal ACLP expression correlated positively with collagen expression and correlated inversely with CD8+ T cell infiltration into primary OSCC tumors. Boyden chamber assays suggested that ACLP in CAFs may attenuate CD8+ T cell migration. Our results suggest that stromal ACLP contributes to the development of OSCCs, and that ACLP is a potential therapeutic target.

4.
Cancer Med ; 12(5): 5953-5963, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36300800

RESUMEN

BACKGROUND: The CXCL12/CXCR4 axis plays a pivotal role in the progression of various malignancies, including oral squamous cell carcinoma (OSCC). In this study, we aimed to clarify the biological and clinical significance of CXCL12 in the tumor microenvironment of OSCCs. METHODS: Publicly available single-cell RNA-sequencing (RNA-seq) datasets were used to analyze CXCL12 expression in head and neck squamous cell carcinomas (HNSCC). Immunohistochemical analysis of CXCL12, α-smooth muscle antigen (α-SMA), fibroblast activation protein (FAP) and CD8 was performed in a series of 47 surgically resected primary tongue OSCCs. Human skeletal muscle cells were co-cultured with or without OSCC cells, after which CXCL12 expression was analyzed using quantitative reverse-transcription PCR. RESULTS: Analysis of the RNA-seq data suggested CXCL12 is abundantly expressed in stromal cells within HNSCC tissue. Immunohistochemical analysis showed that in grade 1 primary OSCCs, CXCL12 is expressed in both tumor cells and muscle cells. By contrast, grade 3 tumors were characterized by disruption of muscle structure and reduced CXCL12 expression. Quantitative analysis of CXCL12-positive areas within tumors revealed that reduced CXCL12 expression correlated with poorer overall survival. Levels of CXCL12 expression tended to inversely correlate α-SMA expression and positively correlate with infiltration by CD8+ lymphocytes, though these relations did not reach statistical significance. CXCL12 was significantly upregulated in muscle cells co-cultured with OSCC cells. CONCLUSION: Our results suggest that tongue OSCC cells activate CXCL12 expression in muscle cells, which may contribute to tumor progression. However, CXCL12 is reduced in advanced OSCCs due to muscle tissue destruction.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias de la Lengua , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Neoplasias de la Lengua/genética , Lengua , Músculo Esquelético/patología , Pronóstico , Microambiente Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
5.
Sci Rep ; 11(1): 20438, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650128

RESUMEN

Long noncoding RNAs (lncRNAs) are deeply involved in cancer development. We previously reported that DLEU1 (deleted in lymphocytic leukemia 1) is one of the lncRNAs overexpressed in oral squamous cell carcinoma (OSCC) cells, where it exhibits oncogenic activity. In the present study, we further clarified the molecular function of DLEU1 in the pathogenesis of OSCC. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that DLEU1 knockdown induced significant changes in the levels of histone H3 lysine 4 trimethylation (H3K4me3) and H3K27 acetylation (H3K27ac) in OSCC cells. Notably, DLEU1 knockdown suppressed levels of H3K4me3/ H3K27ac and expression of a number of interferon-stimulated genes (ISGs), including IFIT1, IFI6 and OAS1, while ectopic DLEU1 expression activated these genes. Western blot analysis and reporter assays suggested that DLEU1 upregulates ISGs through activation of JAK-STAT signaling in OSCC cells. Moreover, IFITM1, one of the ISGs induced by DLUE1, was frequently overexpressed in primary OSCC tumors, and its knockdown inhibited OSCC cell proliferation, migration and invasion. These findings suggest that DLEU1 exerts its oncogenic effects, at least in part, through activation of a series ISGs in OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/patología , ARN Largo no Codificante/metabolismo , Antígenos de Diferenciación/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Genes Relacionados con las Neoplasias , Código de Histonas , Humanos , Interferones/metabolismo , Neoplasias de la Boca/metabolismo , Fosforilación , ARN Largo no Codificante/fisiología , Receptores de Interferón/metabolismo , Factor de Transcripción STAT1/metabolismo , Regulación hacia Arriba
6.
J Oleo Sci ; 66(5): 443-454, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381773

RESUMEN

Transdermal administration of drugs represents an excellent alternative to conventional pharmaceutical dosage forms. However, insufficient penetration of the active pharmaceutical substance through the skin is a common problem. Thus, in the present study we evaluated the skin permeation enhancing ability of liquid crystal (LC) topical formulations. A recently developed LC-forming lipid, C17- monoglycerol ester (MGE), was evaluated and compared with glycerol monoolate (GMO), which is considered as the gold standard for LC formulations. We initially prepared LC formulations containing drugs with different physiochemical properties (tranexamic acid [TXA], 4-methoxy-salicylic acid [4-MS], catechin [CC], and calcein [Cal]), and confirmed the LC phase structures in the prepared formulations using a polarizing light microscope and a small-angle X-ray scattering (SAXS). The physicochemical properties of these formulations were also assessed using a viscometer and a zetasizer. The release rate of the drugs from the LC formulations was determined using a dialysis release method. The skin penetration-enhancing ability of LC formulations was also investigated in an in vitro skin permeation study. The results showed that both MGE- and GMO-LC-forming lipids shared the same behavior in terms of their birefringence indexes, LC phase structures, particle sizes, and zeta potentials. Both the MGE- and GMO-LC formulations managed to improve the skin permeation for various drugs with a range of physiochemical properties. However, MGE formulations showed lower viscosity, faster drug release rate, and better skin penetration-enhancing ability than GMO formulations, strongly suggesting that the low viscosity of MGELC-forming lipids might influence drug diffusivity and permeability through the skin. The present MGELC formulation might be utilized as a promising new topical formulation for therapeutic drugs and cosmetic ingredients.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ésteres , Glicerol , Cristales Líquidos , Piel/metabolismo , Administración Cutánea , Animales , Catequina/administración & dosificación , Catequina/metabolismo , Fenómenos Químicos , Formas de Dosificación , Composición de Medicamentos , Fluoresceínas/administración & dosificación , Fluoresceínas/metabolismo , Técnicas In Vitro , Masculino , Tamaño de la Partícula , Permeabilidad , Ratas , Salicilatos/administración & dosificación , Salicilatos/metabolismo , Ácido Tranexámico/administración & dosificación , Ácido Tranexámico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA