Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Adv Mater ; 35(51): e2304654, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37753928

RESUMEN

Monoclonal antibodies (mAbs) hold promise in treating Parkinson's disease (PD), although poor delivery to the brain hinders their therapeutic application. In the current study, it is demonstrated that brain-targeted liposomes (BTL) enhance the delivery of mAbs across the blood-brain-barrier (BBB) and into neurons, thereby allowing the intracellular and extracellular treatment of the PD brain. BTL are decorated with transferrin to improve brain targeting through overexpressed transferrin-receptors on the BBB during PD. BTL are loaded with SynO4, a mAb that inhibits alpha-synuclein (AS) aggregation, a pathological hallmark of PD. It is shown that 100-nm BTL cross human BBB models intact and are taken up by primary neurons. Within neurons, SynO4 is released from the nanoparticles and bound to its target, thereby reducing AS aggregation, and enhancing neuronal viability. In vivo, intravenous BTL administration results in a sevenfold increase in mAbs in brain cells, decreasing AS aggregation and neuroinflammation. Treatment with BTL also improve behavioral motor function and learning ability in mice, with a favorable safety profile. Accordingly, targeted nanotechnologies offer a valuable platform for drug delivery to treat brain neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Síntomas Conductuales , Encéfalo/metabolismo , Liposomas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Transferrinas
2.
Sci Adv ; 7(41): eabj5435, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613777

RESUMEN

Neurons within the tumor microenvironment promote cancer progression; thus, their local targeting has potential clinical benefits. We designed PEGylated lipid nanoparticles loaded with a non-opioid analgesic, bupivacaine, to target neurons within breast cancer tumors and suppress nerve-to-cancer cross-talk. In vitro, 100-nm nanoparticles were taken up readily by primary neurons, trafficking from the neuronal body and along the axons. We demonstrate that signaling between triple-negative breast cancer cells (4T1) and neurons involves secretion of cytokines stimulating neurite outgrowth. Reciprocally, neurons stimulated 4T1 proliferation, migration, and survival through secretion of neurotransmitters. Bupivacaine curbs neurite growth and signaling with cancer cells, inhibiting cancer cell viability. In vivo, bupivacaine-loaded nanoparticles intravenously administered suppressed neurons in orthotopic triple-negative breast cancer tumors, inhibiting tumor growth and metastatic dissemination. Overall, our findings suggest that reducing nerve involvement in tumors is important for treating cancer.

3.
Plant Signal Behav ; 10(9): e1062200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26252364

RESUMEN

The phytochemical indole-3-carbinol is produced in Cruciferous plants upon tissue rapture and deters herbivores. We recently showed that indole-3-carbinol modulates auxin signaling in root tips. Here we present transcript profiling experiments which further reveal the influence of indole-3-carbinol on auxin signaling in root tips, and also show that I3C affects auxin transporters. Brief treatment with indole-3-carbinol led to a reduction in the amount of PIN1 and to mislocalization of PIN2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Indoles/farmacología , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética
4.
J Physiol ; 592(11): 2369-73, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24882818

RESUMEN

Many cases of heritable environmental responses have been documented but the underlying mechanisms are largely unknown. Recently, inherited RNA interference has been shown to act as a multigenerational genome surveillance apparatus. We suggest that inheritance of regulatory RNAs is at the root of many other epigenetic phenomena, the trigger that induces other epigenetic mechanisms, such as the depositing of histone modifications and DNA methylation. In addition, we explore the possibility that interacting organisms influence each other's transcriptomes by exchanging heterologous non-coding RNAs.


Asunto(s)
Evolución Biológica , Epigénesis Genética/fisiología , Células Procariotas/fisiología , ARN no Traducido , Animales , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA