Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2314233120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844222

RESUMEN

The XR-seq (eXcision Repair-sequencing) method has been extensively used to map nucleotide excision repair genome-wide in organisms ranging from Escherichia coli to yeast, Drosophila, Arabidopsis, mice, and humans. The basic feature of the method is to capture the excised oligomers carrying DNA damage, sequence them, and align their sequences to the genome. We wished to perform XR-seq in vitro with cell-free extract supplemented with a damaged DNA substrate so as to have greater flexibility in investigating factors that affect nucleotide excision repair in the cellular context [M. J. Smerdon, J. J. Wyrick, S. Delaney, J. Biol. Chem. 299, 105118 (2023)]. We report here the successful use of ultraviolet light-irradiated plasmids as substrates for repair in vitro and in vivo by E. coli and E. coli cell-free extracts and by mammalian cell-free extract. XR-seq analyses demonstrated common excision product length and sequence characteristics in vitro and in vivo for both the bacterial and mammalian systems. This approach is expected to help understand the effects of epigenetics and other cellular factors and conditions on DNA repair.


Asunto(s)
Reparación del ADN , Escherichia coli , Humanos , Animales , Ratones , Escherichia coli/genética , Daño del ADN , Genoma , Genómica , Rayos Ultravioleta , Mamíferos/genética
2.
J Biol Chem ; 299(10): 105251, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714462

RESUMEN

Circadian rhythms are controlled at the cellular level by a molecular clock consisting of several genes/proteins engaged in a transcription-translation-degradation feedback loop. These core clock proteins regulate thousands of tissue-specific genes. Regarding circadian control in neoplastic tissues, reports to date have demonstrated anomalous circadian function in tumor models and cultured tumor cells. We have extended these studies by analyzing circadian rhythmicity genome-wide in a mouse model of liver cancer, in which mice treated with diethylnitrosamine at 15 days develop liver tumors by 6 months. We injected tumor-bearing and control tumor-free mice with cisplatin every 2 h over a 24-h cycle; 2 h after each injection mice were sacrificed and gene expression was measured by XR-Seq (excision repair sequencing) assay. Rhythmic expression of several core clock genes was observed in both healthy liver and tumor, with clock genes in tumor exhibiting typically robust amplitudes and a modest phase advance. Interestingly, although normal hepatic cells and hepatoma cancer cells expressed a comparable number of genes with circadian rhythmicity (clock-controlled genes), there was only about 10% overlap between the rhythmic genes in normal and cancerous cells. "Rhythmic in tumor only" genes exhibited peak expression times mainly in daytime hours, in contrast to the more common pre-dawn and pre-dusk expression times seen in healthy livers. Differential expression of genes in tumors and healthy livers across time may present an opportunity for more efficient anticancer drug treatment as a function of treatment time.


Asunto(s)
Carcinoma Hepatocelular , Ritmo Circadiano , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ritmo Circadiano/genética , Hígado/fisiopatología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Reparación por Escisión , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ontología de Genes
3.
Annu Rev Biochem ; 92: 115-144, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001137

RESUMEN

Transcription-coupled repair (TCR), discovered as preferential nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers located in transcribed mammalian genes compared to those in nontranscribed regions of the genome, is defined as faster repair of the transcribed strand versus the nontranscribed strand in transcribed genes. The phenomenon, universal in model organisms including Escherichia coli, yeast, Arabidopsis, mice, and humans, involves a translocase that interacts with both RNA polymerase stalled at damage in the transcribed strand and nucleotide excision repair proteins to accelerate repair. Drosophila, a notable exception, exhibits TCR but lacks an obvious TCR translocase. Mutations inactivating TCR genes cause increased damage-induced mutagenesis in E. coli and severe neurological and UV sensitivity syndromes in humans. To date, only E. coli TCR has been reconstituted in vitro with purified proteins. Detailed investigations of TCR using genome-wide next-generation sequencing methods, cryo-electron microscopy, single-molecule analysis, and other approaches have revealed fascinating mechanisms.


Asunto(s)
Escherichia coli , Transcripción Genética , Humanos , Animales , Ratones , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopía por Crioelectrón , Reparación del ADN , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Mamíferos/genética
4.
J Biol Chem ; 299(3): 103009, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775124

RESUMEN

In vitro and in vivo experiments with Escherichia coli have shown that the Mfd translocase is responsible for transcription-coupled repair, a subpathway of nucleotide excision repair involving the faster rate of repair of the transcribed strand than the nontranscribed strand. Even though the mfd gene is conserved in all bacterial lineages, there is only limited information on whether it performs the same function in other bacterial species. Here, by genome scale analysis of repair of UV-induced cyclobutane pyrimidine dimers, we find that the Mfd protein is the transcription-repair coupling factor in Mycobacterium smegmatis. This finding, combined with the inverted strandedness of UV-induced mutations in WT and mfd-E. coli and Bacillus subtilis indicate that the Mfd protein is the universal transcription-repair coupling factor in bacteria.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Bacterias/metabolismo
5.
J Biol Chem ; 299(3): 102929, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682495

RESUMEN

Circadian rhythmicity is maintained by a set of core clock proteins including the transcriptional activators CLOCK and BMAL1, and the repressors PER (PER1, PER2, and PER3), CRY (CRY1 and CRY2), and CK1δ. In mice, peak expression of the repressors in the early morning reduces CLOCK- and BMAL1-mediated transcription/translation of the repressors themselves. By late afternoon the repressors are largely depleted by degradation, and thereby their expression is reactivated in a cycle repeated every 24 h. Studies have characterized a variety of possible protein interactions and complexes associated with the function of this transcription-translation feedback loop. Our prior investigation suggested there were two circadian complexes responsible for rhythmicity, one containing CLOCK-BMAL and the other containing PER2, CRY1, and CK1δ. In this investigation, we acquired data from glycerol gradient centrifugation and gel filtration chromatography of mouse liver extracts obtained at different circadian times to further characterize circadian complexes. In addition, anti-PER2 and anti-CRY1 immunoprecipitates obtained from the same extracts were analyzed by liquid chromatography-tandem mass spectrometry to identify components of circadian complexes. Our results confirm the presence of discrete CLOCK-BMAL1 and PER-CRY-CK1δ complexes at the different circadian time points, provide masses of 255 and 707 kDa, respectively, for these complexes, and indicate that these complexes are composed principally of the core circadian proteins.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Perfilación de la Expresión Génica , Retroalimentación Fisiológica
6.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994676

RESUMEN

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


Asunto(s)
Daño del ADN , Reparación del ADN , Desoxiuridina , ADN/química , ADN/genética , Desoxiuridina/análogos & derivados , Genoma Humano , Humanos , Timidina/análogos & derivados , Transcripción Genética , Rayos Ultravioleta
7.
J Biol Chem ; 298(5): 101863, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339490

RESUMEN

Nucleotide excision repair functions to protect genome integrity, and ongoing studies using excision repair sequencing (XR-seq) have contributed to our understanding of how cells prioritize repair across the genome. In this method, the products of excision repair bearing damaged DNA are captured, sequenced, and then mapped genome-wide at single-nucleotide resolution. However, reagent requirements and complex procedures have limited widespread usage of this technique. In addition to the expense of these reagents, it has been hypothesized that the immunoprecipitation step using antibodies directed against damaged DNA may introduce bias in different sequence contexts. Here, we describe a newly developed adaptation called dA-tailing and adaptor ligation (ATL)-XR-seq, a relatively simple XR-seq method that avoids the use of immunoprecipitation targeting damaged DNA. ATL-XR-seq captures repair products by 3'-dA-tailing and 5'-adapter ligation instead of the original 5'- and 3'-dual adapter ligation. This new approach avoids adapter dimer formation during subsequent PCR, omits inefficient and time-consuming purification steps, and is very sensitive. In addition, poly(dA) tail length heterogeneity can serve as a molecular identifier, allowing more repair hotspots to be mapped. Importantly, a comparison of both repair mapping methods showed that no major bias is introduced by the anti-UV damage antibodies used in the original XR-seq procedure. Finally, we also coupled the described dA-tailing approach with quantitative PCR in a new method to quantify repair products. These new methods provide powerful and user-friendly tools to qualitatively and quantitatively measure excision repair.


Asunto(s)
Mapeo Cromosómico , Daño del ADN , Reparación del ADN , Mapeo Cromosómico/métodos , ADN , Genoma , Oligonucleótidos , Dímeros de Pirimidina , Rayos Ultravioleta
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217627

RESUMEN

Drosophila melanogaster has been extensively used as a model system to study ionizing radiation and chemical-induced mutagenesis, double-strand break repair, and recombination. However, there are only limited studies on nucleotide excision repair in this important model organism. An early study reported that Drosophila lacks the transcription-coupled repair (TCR) form of nucleotide excision repair. This conclusion was seemingly supported by the Drosophila genome sequencing project, which revealed that Drosophila lacks a homolog to CSB, which is known to be required for TCR in mammals and yeasts. However, by using excision repair sequencing (XR-seq) genome-wide repair mapping technology, we recently found that the Drosophila S2 cell line performs TCR comparable to human cells. Here, we have extended this work to Drosophila at all its developmental stages. We find TCR takes place throughout the life cycle of the organism. Moreover, we find that in contrast to humans and other multicellular organisms previously studied, the XPC repair factor is required for both global and transcription-coupled repair in Drosophila.


Asunto(s)
Reparación del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transcripción Genética , Animales , Línea Celular , Cisplatino/farmacología , ADN/efectos de los fármacos , ADN/efectos de la radiación , Rayos Ultravioleta
9.
Nucleic Acids Res ; 49(21): 12252-12267, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34788860

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (OG), one of the most common oxidative DNA damages, causes genome instability and is associated with cancer, neurological diseases and aging. In addition, OG and its repair intermediates can regulate gene transcription, and thus play a role in sensing cellular oxidative stress. However, the lack of methods to precisely map OG has hindered the study of its biological roles. Here, we developed a single-nucleotide resolution OG-sequencing method, named CLAPS-seq (Chemical Labeling And Polymerase Stalling Sequencing), to measure the genome-wide distribution of both exogenous and endogenous OGs with high specificity. Our data identified decreased OG occurrence at G-quadruplexes (G4s), in association with underrepresentation of OGs in promoters which have high GC content. Furthermore, we discovered that potential quadruplex sequences (PQSs) were hotspots of OGs, implying a role of non-G4-PQSs in OG-mediated oxidative stress response.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/análisis , Daño del ADN , G-Cuádruplex , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Nucleótidos/genética , Algoritmos , ADN/química , ADN/genética , ADN/metabolismo , Estudios de Factibilidad , Células HeLa , Humanos , Nucleótidos/metabolismo , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
10.
J Biol Chem ; 297(3): 101068, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375638

RESUMEN

The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Cronofarmacocinética , Relojes Circadianos/fisiología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Proteínas CLOCK/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ciclo Celular/fisiología , Fenómenos Cronobiológicos , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Cisplatino/farmacocinética , Cisplatino/farmacología , Criptocromos/genética , Criptocromos/metabolismo , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Humanos , Ratones , Neoplasias/genética , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443219

RESUMEN

The mammalian circadian clock consists of a transcription-translation feedback loop (TTFL) composed of CLOCK-BMAL1 transcriptional activators and CRY-PER transcriptional repressors. Previous work showed that CRY inhibits CLOCK-BMAL1-activated transcription by a "blocking"-type mechanism and that CRY-PER inhibits CLOCK-BMAL1 by a "displacement"-type mechanism. While the mechanism of CRY-mediated repression was explained by both in vitro and in vivo experiments, the CRY-PER-mediated repression in vivo seemed in conflict with the in vitro data demonstrating PER removes CRY from the CLOCK-BMAL1-E-box complex. Here, we show that CRY-PER participates in the displacement-type repression by recruiting CK1δ to the nucleus and mediating an increased local concentration of CK1δ at CLOCK-BMAL1-bound promoters/enhancers and thus promoting the phosphorylation of CLOCK and dissociation of CLOCK-BMAL1 along with CRY from the E-box. Our findings bring clarity to the role of PER in the dynamic nature of the repressive phase of the TTFL.


Asunto(s)
Relojes Circadianos/fisiología , Regulación de la Expresión Génica/genética , Mamíferos/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Expresión Génica/genética , Humanos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Transactivadores/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética
12.
EMBO J ; 40(7): e106745, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491228

RESUMEN

Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.


Asunto(s)
Ritmo Circadiano , Criptocromos/metabolismo , Animales , Células Cultivadas , Criptocromos/deficiencia , Criptocromos/genética , Drosophila melanogaster , Femenino , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
13.
FEBS J ; 288(2): 614-639, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383312

RESUMEN

Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine ß-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn  mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Cistationina betasintasa/genética , Metaboloma/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/deficiencia , Cistationina betasintasa/metabolismo , Elementos E-Box , Femenino , Células HEK293 , Humanos , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal
14.
J Biol Chem ; 295(50): 17374-17380, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087442

RESUMEN

In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11-13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24-32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.


Asunto(s)
Proteínas Bacterianas/metabolismo , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mycobacterium smegmatis/metabolismo , Oligonucleótidos/metabolismo , Transcripción Genética , Proteínas Bacterianas/genética , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli/genética , Mycobacterium smegmatis/genética , Oligonucleótidos/genética
15.
Proc Natl Acad Sci U S A ; 117(35): 21609-21617, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817420

RESUMEN

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among these Myc has been the focus of several studies which have investigated the effect of clock genes and proteins on Myc transcription and MYC protein stability. Other studies have focused on effects of Myc mutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genes Bmal1, Cry1, and Cry2 to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of both Cry1 and Cry2, which abolishes the negative arm of the clock transcription-translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation of Bmal1, which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption-cancer connection.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas de Ciclo Celular/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/metabolismo , Femenino , Regulación de la Expresión Génica , Genes myc , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oncogenes , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
16.
J Biol Chem ; 295(22): 7584-7594, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32299912

RESUMEN

Platinum-based chemotherapies, including oxaliplatin, are a mainstay in the management of solid tumors and induce cell death by forming intrastrand dinucleotide DNA adducts. Despite their common use, they are highly toxic, and approximately half of cancer patients have tumors that are either intrinsically resistant or develop resistance. Previous studies suggest that this resistance is mediated by variations in DNA repair levels or net drug influx. Here, we aimed to better define the roles of nucleotide excision repair and DNA damage in platinum chemotherapy resistance by profiling DNA damage and repair efficiency in seven oxaliplatin-sensitive and three oxaliplatin-resistant colorectal cancer cell lines. We assayed DNA repair indirectly as toxicity and directly measured bulky adduct formation and removal from the genome by slot blot and repair capacity in an excision assay, and used excision repair sequencing (XR-seq) to map repair events genome-wide at single-nucleotide resolution. Using this combinatorial approach and proxies for oxaliplatin-DNA damage, we observed no significant differences in repair efficiency that could explain the relative sensitivities and chemotherapy resistances of these cell lines. In contrast, the levels of oxaliplatin-induced DNA damage were significantly lower in the resistant cells, indicating that decreased damage formation, rather than increased damage repair, is a major determinant of oxaliplatin resistance in these cell lines. XR-seq-based analysis of gene expression revealed up-regulation of membrane transport pathways in the resistant cells, and these pathways may contribute to resistance. In conclusion, additional research is needed to characterize the factors mitigating cellular DNA damage formation by platinum compounds.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Aductos de ADN/metabolismo , Daño del ADN , Reparación del ADN , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos , Oxaliplatino/farmacología , Neoplasias Colorrectales/patología , Células HCT116 , Humanos
17.
J Biol Chem ; 294(48): 18092-18098, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31624146

RESUMEN

Previous work with the classic T4 endonuclease V digestion of DNA from irradiated Drosophila cells followed by Southern hybridization led to the conclusion that Drosophila lacks transcription-coupled repair (TCR). This conclusion was reinforced by the Drosophila Genome Project, which revealed that Drosophila lacks Cockayne syndrome WD repeat protein (CSA), CSB, or UV-stimulated scaffold protein A (UVSSA) homologs, whose orthologs are present in eukaryotes ranging from Arabidopsis to humans that carry out TCR. A recently developed in vivo excision assay and the excision repair-sequencing (XR-Seq) method have enabled genome-wide analysis of nucleotide excision repair in various organisms at single-nucleotide resolution and in a strand-specific manner. Using these methods, we have discovered that Drosophila S2 cells carry out robust TCR comparable with that observed in mammalian cells. Our findings provide critical new insights into the mechanisms of TCR among various different species.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Drosophila , Animales , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
18.
J Biol Chem ; 294(32): 11960-11968, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217280

RESUMEN

Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.


Asunto(s)
Relojes Circadianos/fisiología , Cisplatino/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Hígado/metabolismo , Animales , Cisplatino/análisis , Cisplatino/farmacología , Aductos de ADN/análisis , Daño del ADN/efectos de los fármacos , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN/métodos , Factores de Tiempo
19.
J Biol Chem ; 294(1): 210-217, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30413533

RESUMEN

The unique nucleolar environment, the repetitive nature of ribosomal DNA (rDNA), and especially the possible involvement of RNA polymerase I (RNAPI) in transcription-coupled repair (TCR) have made the study of repair of rDNA both interesting and challenging. TCR, the transcription-dependent, preferential excision repair of the template strand compared with the nontranscribed (coding) strand has been clearly demonstrated in genes transcribed by RNAPII. Whether TCR occurs in rDNA is unresolved. In the present work, we have applied analytical methods to map repair events in rDNA using data generated by the newly developed XR-seq procedure, which measures excision repair genome-wide with single-nucleotide resolution. We find that in human and mouse cell lines, rDNA is not subject to TCR of damage caused by UV or by cisplatin.


Asunto(s)
Reparación del ADN , ADN Ribosómico/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , Análisis de Secuencia de ADN , Transcripción Genética , Animales , ADN Ribosómico/genética , Humanos , Ratones , ARN Polimerasa I/genética , ARN Polimerasa II/genética
20.
Nat Protoc ; 14(1): 248-282, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552409

RESUMEN

Nucleotide excision repair is a versatile mechanism to repair a variety of bulky DNA adducts. We developed excision repair sequencing (XR-seq) to study nucleotide excision repair of DNA adducts in humans, mice, Arabidopsis thaliana, yeast and Escherichia coli. In this protocol, the excised oligomers, generated in the nucleotide excision repair reaction, are isolated by cell lysis and fractionation, followed by immunoprecipitation with damage- or repair factor-specific antibodies from the non-chromatin fraction. The single-stranded excised oligomers are ligated to adapters and re-immunoprecipitated with damage-specific antibodies. The DNA damage in the excised oligomers is then reversed by enzymatic or chemical reactions before being converted into a sequencing library by PCR amplification. Alternatively, the excised oligomers containing DNA damage, especially those containing irreversible DNA damage such as benzo[a]pyrene-induced DNA adducts, can be converted to a double-stranded DNA (dsDNA) form by using appropriate translesion DNA synthesis (TLS) polymerases and then can be amplified by PCR. The current genome-wide approaches for studying repair measure the loss of damage signal with time, which limits their resolution. By contrast, an advantage of XR-seq is that the repair signal is directly detected above a background of zero. An XR-seq library using the protocol described here can be obtained in 7-9 d.


Asunto(s)
Fraccionamiento Químico/métodos , Mapeo Cromosómico/métodos , Reparación del ADN , ADN/química , Genoma , Animales , Anticuerpos/química , Arabidopsis/genética , Arabidopsis/metabolismo , Benzo(a)pireno/química , ADN/genética , ADN/metabolismo , Aductos de ADN/química , Daño del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Genómica , Humanos , Ratones , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA