Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692999

RESUMEN

This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.


Asunto(s)
Liberación de Fármacos , Queratinas , Nanogeles , Pectinas , Impresión Tridimensional , Selenio , Parche Transdérmico , Selenio/química , Pectinas/química , Queratinas/química , Animales , Nanogeles/química , Ratones , Oxidación-Reducción , Cicatrización de Heridas/efectos de los fármacos , Línea Celular , Nanocompuestos/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
2.
Pharmaceutics ; 15(7)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514105

RESUMEN

Acyclovir (ACV) is a promising candidate for drug repurposing because of its potential to provide an effective treatment for viral infections and non-viral diseases, such as cancer, for which limited treatment options exist. However, its poor physicochemical properties limit its application. This study aimed to formulate and evaluate an ACV-loaded red clay nanodrug delivery system exhibiting an effective cytotoxicity. The study focused on the preparation of a complex between ACV and red clay (RC) using sucrose stearate (SS) (nanocomplex F1) as an immediate-release drug-delivery system for melanoma treatment. The synthesized nanocomplex, which had nanosized dimensions, a negative zeta potential and the drug release of approximately 85% after 3 h, was found to be promising. Characterization techniques, including FT-IR, XRD and DSC-TGA, confirmed the effective encapsulation of ACV within the nanocomplex and its stability due to intercalation. Cytotoxicity experiments conducted on melanoma cancer cell lines SK-MEL-3 revealed that the ACV release from the nanocomplex formulation F1 effectively inhibited the growth of melanoma cancer cells, with an IC50 of 25 ± 0.09 µg/mL. Additionally, ACV demonstrated a significant cytotoxicity at approximately 20 µg/mL in the melanoma cancer cell line, indicating its potential repurposing for skin cancer treatment. Based on these findings, it can be suggested that the RC-SS complex could be an effective drug delivery carrier for localized cancer therapy. Furthermore, the results of an in silico study suggested the addition of chitosan to the formulation for a more effective drug delivery. Energy and interaction analyses using various modules in a material studio demonstrated the high stability of the composite comprising red clay, sucrose stearate, chitosan and ACV. Thus, it could be concluded that the utilization of the red clay-based drug delivery system is a promising strategy to improve the effectiveness of targeted cancer therapy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37204569

RESUMEN

Nisin, a thermostable, approved food preservative, has limited therapeutic applications because of its high pH and proteolytic enzyme instability. The unavailability of a rapid, simple method of detection also restricts the research of nisin. The objective of this study was to adapt the simple, rapid protein estimation method of detection for nisin formulation and to formulate and evaluate site-specific nanoformulation for therapeutic applications, viz. colon cancer, and anti-bacterial action. Three nanoformulations of nisin with chitosan, gellan gum, and dextran (ECN, EGN, and EDN) were prepared and characterized in vitro. Among three, EGN was selected as a good formulation based on its size surface charge, morphology, drug loading, and release characteristics. FT-IR and DSC revealed the interaction pattern and stability nature. The stability of nisin in an alkaline environment was confirmed by CD. Its therapeutic applications were proved by efficiency against colon cancer cells evaluated by MTT assay and AO/EB staining using Caco-2 cell lines. The in situ sol-gel mechanism imparted by gellan gum was proved the sole reason for the stability and activity of nisin in EGN at lower GIT. This was confirmed (using rheometer) by shear-thickening characteristics of formulation EGN in simulated colon fluid. The antibacterial activity against Staphylococcus aureus by disk diffusion method was also performed to confirm the retention of antimicrobial activity of nisin in EGN. Hence, gellan gum-nisin colloidal nanoparticles are found good candidates for drug delivery at lower GIT and stabilizing alkaline food materials.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36986480

RESUMEN

A pharmaceutical formulation with favorable pharmacokinetic parameters is more likely to be efficacious and safe to overcome the failures of the drug resulting from lack of efficacy, poor bioavailability, and toxicity. In this view, we aimed to evaluate the pharmacokinetic functionalities and safety margin of an optimized CS-SS nanoformulation (F40) by in vitro/in vivo methods. The everted sac technique was used to evaluate the improved absorption of a simvastatin formulation. In vitro protein binding in bovine serum and mice plasma was performed. The formulation's liver and intestinal CYP3A4 activity and metabolic pathways were investigated by the qRT-PCR technique. The excretion of cholesterol and bile acids was measured to demonstrate the formulation's cholesterol depletion effect. Safety margins were determined by histopathology as well as fiber typing studies. In vitro protein binding results revealed the existence of a high percentage of free drugs (22.31 ± 3.1%, 18.20 ± 1.9%, and 16.9 ± 2.2%, respectively) compared to the standard formulation. The controlled metabolism in the liver was demonstrated from CYP3A4 activity. The formulation showed enhanced PK parameters in rabbits such as a lower Cmax, clearance, and a higher Tmax, AUC, Vd, and t1/2. qRT-PCR screening further proved the different metabolic pathways followed by simvastatin (SREBP-2) and chitosan (PPAR-γ pathway) in the formulation. The results from qRT-PCR and histopathology confirmed the toxicity level. Hence, this pharmacokinetic profile of the nanoformulation proved it has a unique synergistic hypolipidemic modality.

5.
Drug Dev Ind Pharm ; 45(11): 1725-1739, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31432703

RESUMEN

Objective and methods: This study predicted the nature of chitosan interactions and effects of this interaction on drug release mechanism in simvastatin-loaded chitosan nanoformulation using molecular docking, spectroscopic and thermal analysis. Significance: This work explains in depth the molecular mechanism of simvastatin and chitosan bond formation in nanoformulation. Results: The effective encapsulation and sustain release properties of chitosan were indicated by increase in melting endotherm of simvastatin. Intermolecular hydrogen bond between third hydroxyl group pyranone ring of simvastatin and amino group of chitosan represented the stability of active lactone moiety that was not cleaved during formulation which is prerequisite for biological activity. UV-vis spectroscopic characterization, shift in infrared vibration wavenumber of simvastatin and chitosan, ligand titration, 1HNMR and 13C-NMR analyses confirmed this interaction pattern. The pharmacokinetic evaluation in mouse model revealed the sustain release property of nanoformulation. Conclusion: Thus formation of intermolecular hydrogen bond in nanoformulation contributed to modified physicochemical properties and improved in vivo performance of simvastatin.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Liberación de Fármacos , Hiperlipidemias/tratamiento farmacológico , Simvastatina/farmacocinética , Administración Oral , Animales , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/efectos adversos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Composición de Medicamentos , Femenino , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/etiología , Ratones , Simulación del Acoplamiento Molecular , Nanopartículas/química , Tamaño de la Partícula , Espectroscopía de Protones por Resonancia Magnética , Simvastatina/administración & dosificación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA