Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Emerg Microbes Infect ; 12(2): 2239952, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37497655

RESUMEN

Host genetic polymorphisms are recognized as a critical determinant of diversity in clinical symptoms of Coronavirus disease 2019 (COVID-19). Accordingly, this study aimed to determine possible associations between single nucleotide polymorphisms (SNPs) in 37 candidate genetic variants and clinical consequences of COVID-19 - especially long-term symptoms, Long COVID. A total of 260 COVID-19 patients, divided into mild (n = 239) and severe (n = 21) and further categorized based on the presence of Long COVID (no, n = 211; yes, n = 49), were recruited. Genotyping of selected polymorphisms responsible for viral entry, immune response, and inflammation was performed using MassARRAY system. Out of 37 SNPs, 9 including leucine zipper transcription factor like-1 (LZTFL1) rs10490770 C allele, LZTFL1 rs11385942 dupA allele, nicotinamide adenine dinucleotide synthetase-1 (NADSYN1) rs12785878 TT genotype, plexin A-4 (PLXNA4) rs1424597 AA genotype, LZTFL1 rs17713054 A allele, interleukin-10 (IL10) rs1800896 TC genotype and C allele, angiotensin converting enzyme-2 (ACE2) rs2285666 T allele, and plasmanylethanolamine desaturase-1 (PEDS1) rs6020298 GG genotype and G allele were significantly associated with an increased risk of developing Long COVID, whereas interleukin-10 receptor subunit beta (IL10RB) rs8178562 GG genotype was significantly associated with a reduced risk of Long COVID. Kaplan-Meier curve displayed that the above gene polymorphisms were significantly associated with cumulative rate of Long COVID occurrence. Polymorphisms in LZTFL1 rs10490770, LZTFL1 rs11385942, LZTFL1 rs17713054, NADSYN1 rs12785878, PLXNA4 rs1424597, IL10 rs1800896, ACE2 rs2285666, PEDS1 rs6020298, and IL10RB rs8178562 appear to be genetic factors involved in development of Long COVID.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Interleucina-10/genética , Enzima Convertidora de Angiotensina 2/genética , Predisposición Genética a la Enfermedad , Síndrome Post Agudo de COVID-19 , Polimorfismo de Nucleótido Simple
2.
Artículo en Inglés | MEDLINE | ID: mdl-36429432

RESUMEN

Human papillomavirus type 16 (HPV16) and/or high-risk (Hr-) HPV are the main causes of cervical cancer. Another element that may contribute to the development of cervical cancer is the microbiota. To date, no study has investigated the entire cervical microbiome, which consists of bacteria, fungi, and viruses. In this study, cervical samples with different histopathology (CIN1, CIN2, and CIN3), with or without HPV16 and Hr-HPVs infection, were enrolled. From bacterial community analysis, 115 bacterial species were found and separated into 2 distinct categories based on Lactobacillus abundance: Lactobacilli-dominated (LD) and non-Lactobacilli-dominated (NLD) groups. The LD group had significantly less bacterial diversity than the NLD group. In addition, the variety of bacteria was contingent on the prevalence of HPV infection. Among distinct histological groups, an abundance of L. iners (>60% of total Lactobacillus spp.) was discovered in both groups. A few fungi, e.g., C. albicans, were identified in the fungal community. The viral community analysis revealed that the presence of HPV considerably reduced the diversity of human viruses. Taken together, when we analyzed all our results collectively, we discovered that HPV infection was a significant determinant in the diversity of bacteria and human viruses in the cervix.


Asunto(s)
Microbiota , Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Infecciones por Papillomavirus/epidemiología , Cuello del Útero/patología , Neoplasias del Cuello Uterino/patología , Papillomavirus Humano 16 , Lactobacillus , Displasia del Cuello del Útero/epidemiología
3.
BMC Cancer ; 22(1): 963, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076157

RESUMEN

INTRODUCTION: Difference in clinical responses to cancer therapy in each patient is from several factors. Gastrointestinal microbiota is one of the reasons. However, this correlation remains unknown. This study aims to explore correlation between gastrointestinal microbiota profile and clinical outcomes in Thai advanced non-small cell lung cancer (NSCLC) according to epidermal growth factor receptor (EGFR) status. METHODS: We enrolled 13 patients with advanced EGFR-wild-type (WT) NSCLC who received chemotherapy and 15 patients with EGFR-mutant NSCLC who received EGFR tyrosine kinase inhibitors. We collected fecal samples at baseline and first disease evaluation and performed 16S rRNA gene sequencing by NGS to assess microbiota profile. The correlations between gastrointestinal microbiota and clinical variables were studied. RESULTS: The clinical characteristics were balanced between the cohorts, excluding significantly higher albumin levels in the EGFR-mutant group. Albumin was the only significant clinical factor affecting the treatment response in multivariate analysis (ORR 15.6%, P = 0.03). Proteobacteria counts were higher in the EGFR-WT group, whereas Bacteroidetes and Firmicutes counts were higher in the EGFR-mutant group. The alpha diversity of the gastrointestinal microbiome was significantly higher in the EGFR-mutant group (Shannon index: 3.82 vs. 3.25, P = 0.022). Following treatment, Proteobacteria counts were lower and Bacteroidetes and Firmicutes counts were higher in both cohorts; the changes were more prominent in the EGFR-WT cohort. No significant correlation between microbiota profile and treatment response were demonstrated in our study. However, beta diversity was significantly different according to severity of adverse events. Enrichment of Clostridia and Bacteroidia was associated with higher adverse event risk in the EGFR-WT cohort. CONCLUSIONS: Proteobacteria was dominant in Thai lung cancer patients both EGFR-WT and EGFR-mutant, and this phylum maybe associate with lung cancer carcinogenesis. Chemotherapy altered the gastrointestinal microbiota, whereas EGFR-TKIs had less effects. Our findings highlight the potential predictive utility of the gastrointestinal microbiota for lung cancer carcinogenesis. Studies with larger cohorts and comparison with the healthy Thai population are ongoing to validate this pilot study.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Albúminas/uso terapéutico , Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB , Microbioma Gastrointestinal/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Proyectos Piloto , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Ribosómico 16S/genética
4.
Viruses ; 14(9)2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146871

RESUMEN

Although other co-viral infections could also be considered influencing factors, cervical human papillomavirus (HPV) infection is the main cause of cervical cancer. Metagenomics have been employed in the NGS era to study the microbial community in each habitat. Thus, in this investigation, virome capture sequencing was used to examine the virome composition in the HPV-infected cervix. Based on the amount of HPV present in each sample, the results revealed that the cervical virome of HPV-infected individuals could be split into two categories: HPV-dominated (HD; ≥60%) and non-HPV-dominated (NHD; <60%). Cervical samples contained traces of several human viral species, including the molluscum contagiosum virus (MCV), human herpesvirus 4 (HHV4), torque teno virus (TTV), and influenza A virus. When compared to the HD group, the NHD group had a higher abundance of several viruses. Human viral diversity appears to be influenced by HPV dominance. This is the first proof that the diversity of human viruses in the cervix is impacted by HPV abundance. However, more research is required to determine whether human viral variety and the emergence of cancer are related.


Asunto(s)
Alphapapillomavirus , Cuello del Útero , Coinfección , Infecciones por Papillomavirus , Viroma , Cuello del Útero/virología , ADN Viral/genética , Femenino , Humanos , Papillomaviridae/genética , Neoplasias del Cuello Uterino , Viroma/genética , Virus
5.
Viruses ; 14(4)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458526

RESUMEN

Human pegivirus-1 (HPgV-1) is a lymphotropic human virus, typically considered nonpathogenic, but its infection can sometimes cause persistent viremia both in immunocompetent and immunosuppressed individuals. In a viral discovery research program in hematopoietic stem cell transplant (HSCT) pediatric patients, HPgV-1 was detected in 3 out of 14 patients (21.4%) using a target enrichment next-generation sequencing method, and the presence of the viruses was confirmed by agent-specific qRT-PCR assays. For the first time in this patient cohort, complete genomes of HPgV-1 were acquired and characterized. Phylogenetic analyses indicated that two patients had HPgV-1 genotype 2 and one had HPgV-1 genotype 3. Intra-host genomic variations were described and discussed. Our results highlight the necessity to screen HSCT patients and blood and stem cell donors to reduce the potential risk of HPgV-1 transmission.


Asunto(s)
Infecciones por Flaviviridae , Virus GB-C , Trasplante de Células Madre Hematopoyéticas , Niño , Virus GB-C/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Metagenómica , Filogenia , ARN Viral/genética
7.
Ann Med ; 53(1): 1243-1255, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34309460

RESUMEN

INTRODUCTION: Pheochromocytomas and paragangliomas (PPGLs) are highly heritable tumours, with up to 40% of cases carrying germline variants. Current guidelines recommend genetic testing for all patients with PPGLs. Next-generation sequencing (NGS) enables accurate, fast, and inexpensive genetic testing. This study aimed to compare the costs related to PPGL genetic testing between the sequential testing using the decisional algorithm proposed in the 2014 Endocrine Society guidelines and targeted NGS gene panels. METHODS: Patients with proven PPGLs were enrolled. A gene list covering 17 susceptibility genes related to hereditary PPGLs was developed for targeted sequencing. Validation was carried out by Sanger sequencing. We simulated the diagnostic workflow to examine the anticipated costs based on each strategy for genetic testing. RESULTS: Twenty-nine patients were included, among whom a germline variant was identified in 34.5%. A total of 22.7% with apparently sporadic PPGL carried a variant. Five genes were involved (RET, n = 3; SDHB, n = 3; SDHD, n = 2; EGLN1, n = 1; and NF1, n = 1). According to the diagnostic workflow, the average cost of the targeted NGS (534.7 US dollars per patient) is lower than that of the sequential testing (734.5 US dollars per patient). The targeted NGS can also reduce the number of hospital visits from 4.1 to 1 per person. The cost can be further reduced to 496.24 US dollars per person (32% reduction) if we apply a new syndromic-driven diagnostic algorithm to establish priorities for specific genetic testing for syndromic and selected cases, and targeted NGS for non-syndromic patients. CONCLUSIONS: Targeted NGS can reduce both the cost of PPGL genetic testing and the number of hospital visits, compared with the conventional approach. Our proposed algorithm is the preferred approach due to its significant reduction of the cost of genetic testing.Key messagePheochromocytomas and paragangliomas are highly heritable neoplasms.The targeted next-generation sequencing (NGS) gene panels have proven to be fast, accurate, and inexpensive for the genetic analysis.According to this cost analysis, it is economically reasonable to use targeted NGS gene panels for genetic screening.


Asunto(s)
Pruebas Genéticas/economía , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Neoplasias de las Glándulas Suprarrenales/genética , Costos y Análisis de Costo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico
8.
Hum Genome Var ; 8(1): 7, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542200

RESUMEN

Pharmacogenomics can enhance the outcome of treatment by adopting pharmacogenomic testing to maximize drug efficacy and lower the risk of serious adverse events. Next-generation sequencing (NGS) is a cost-effective technology for genotyping several pharmacogenomic loci at once, thereby increasing publicly available data. A panel of 100 pharmacogenes among Southeast Asian (SEA) populations was resequenced using the NGS platform under the collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm). Here, we present the frequencies of pharmacogenomic variants and the comparison of these pharmacogenomic variants among different SEA populations and other populations used as controls. We investigated the different types of pharmacogenomic variants, especially those that may have a functional impact. Our results provide substantial genetic variations at 100 pharmacogenomic loci among SEA populations that may contribute to interpopulation variability in drug response phenotypes. Correspondingly, this study provides basic information for further pharmacogenomic investigations in SEA populations.

9.
Virus Res ; 292: 198233, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33227343

RESUMEN

Coronavirus Disease 2019 (COVID-19) is a global public health threat. Genomic surveillance of SARS-CoV-2 was implemented in March of 2020 at a major diagnostic hub in Bangkok, Thailand. Several virus lineages supposedly originated in many countries were found, and a Thai-specific lineage, designated A/Thai-1, has expanded to be predominant in Thailand. A virus sample in the SARS-CoV-2 A/Thai-1 lineage contains a frame-shift deletion at ORF7a, encoding a putative host antagonizing factor of the virus.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , SARS-CoV-2/genética , Proteínas Virales/genética , COVID-19/prevención & control , COVID-19/virología , Monitoreo Epidemiológico , Mutación del Sistema de Lectura , Genómica , Humanos , Filogenia , Salud Pública , Tailandia
10.
Endocr Connect ; 9(11): 1121-1134, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33310921

RESUMEN

OBJECTIVE: To identify the genetic etiologies of congenital primary hypothyroidism (CH) in Thai patients. DESIGN AND METHODS: CH patients were enrolled. Clinical characteristics including age, signs and symptoms of CH, pedigree, family history, screened thyroid-stimulating hormone results, thyroid function tests, thyroid imaging, clinical course and treatment of CH were collected. Clinical exome sequencing by next-generation sequencing was performed. In-house gene list which covered 62 potential candidate genes related to CH and thyroid disorders was developed for targeted sequencing. Sanger sequencing was performed to validate the candidate variants. Thyroid function tests were determined in the heterozygous parents who carried the same DUOX2 or DUOXA2 variants as their offsprings. RESULTS: There were 118 patients (63 males) included. Mean (SD) age at enrollment was 12.4 (7.9) years. Forty-five of 118 patients (38%) had disease-causing variants. Of 45 variants, 7 genes were involved (DUOX2, DUOXA2, TG, TPO, SLC5A5, PAX8 and TSHR). DUOX2, a gene causing thyroid dyshormonogenesis, was the most common defective gene (25/45, 56%). The most common DUOX2 variant found in this study was c.1588A>T. TG and TPO variants were less common. Fourteen novel variants were found. Thyroid function tests of most parents with heterozygous state of DUOX2 and DUOXA2 variants were normal. CONCLUSIONS: DUOX2 variants were most common among Thai CH patients, while TG and TPO variants were less common. The c.1588A>T in DUOX2 gene was highly frequent in this population.

11.
Onco Targets Ther ; 9: 2121-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27110128

RESUMEN

BACKGROUND: Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. METHODS: Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G), CYP2D6 (100C>T), ABCB1 (3435C>T), and ABCC2 (-24C>T) were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS: In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0.004; hazard ratio [HR] =3.05; 95% confidence interval [CI], 1.44-6.47). In the multivariate analysis, tumor size >5 cm remained predictive of distant metastasis (P<0.001; HR=5.49; 95% CI, 2.30-13.10). ABCC2 -24CC were shown to be associated with increased risk of distant metastasis (P=0.040; adjusted HR=2.34; 95% CI, 1.04-5.27). The combined genotype of ABCC2 -24CC - ABCB1 3435 CT+TT was associated with increased risk of distant and bone metastasis (P=0.020; adjusted HR=2.46; 95% CI, 1.15-5.26 and P=0.040; adjusted HR=3.70; 95% CI, 1.06-12.89, respectively). CONCLUSION: This study indicates that polymorphisms of ABCC2 and ABCB1 are independently associated with bone metastasis. Further prospective studies with larger sample sizes are needed to verify this finding.

12.
Pharmgenomics Pers Med ; 6: 93-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019753

RESUMEN

BACKGROUND: Pharmacogenetic study of cytochrome P450 (CYP) gene CYP2D6 and tamoxifen outcomes remain controversial. Apart from CYP2D6, other drug-metabolizing enzymes and transporters also play a role in tamoxifen metabolic pathways. The aim of this study is to investigate the impact of CYP3A4/5, ABCB1, and ABCC2 polymorphisms on the risk of recurrence in Thai patients who received tamoxifen adjuvant therapy. METHODS: Patients with early-stage breast cancer who received tamoxifen adjuvant therapy were recruited in this study. All six single-nucleotide polymorphisms (SNPs), including CYP3A4*1B (-392 A>G)/*18(878 T>C), CYP3A5*3(6986 G>A), ABCB1 3435 C>T, ABCC2*1C(-24 C>T), and ABCC2 68231 A>G, were genotyped using real-time polymerase chain reaction assays. The impacts of genetic variants on disease-free survival (DFS) were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS: The ABCB1 3435 C>T was found to have the highest allele frequency among other variants; however, CYP3A4*1B/*18 could not be found in this study. Patients with heterozygous ABCB1 3435 CT genotype showed significantly shorter DFS than those with homozygous 3435 CC genotype (P = 0.041). In contrast, patients who carried homozygous 3435 TT genotype showed no difference in DFS from wild-type 3435 CC patients. Cox regression analysis showed that the relative risk of recurrence was increased by five times (P = 0.043; hazard ratio = 5.11; 95% confidence interval: 1.05-24.74) in those patients carrying ABCB1 3435 CT genotype compared to those with ABCB1 3435 CC. CONCLUSION: ABCB1 3435 C>T is likely to have a clinically significant impact on recurrence risk in Thai patients with breast cancer who receive tamoxifen adjuvant therapy.

13.
Pharmgenomics Pers Med ; 6: 37-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776391

RESUMEN

PURPOSE: To investigate the impact of CYP2D6 and CYP2C19 polymorphisms in predicting tamoxifen efficacy and clinical outcomes in Thai breast cancer patients. METHODS: Polymorphisms of CYP2D6 and CYP2C19 were genotyped by the AmpliChip™ CYP450 Test (Roche Molecular Diagnostics, Branchburg, NJ, USA) for 57 patients, who were matched as recurrent versus non-recurrent breast cancers (n = 33 versus n = 24, respectively, with a 5-year follow-up). RESULTS: Based on the genotype data, five CYP2D6 predicted phenotype groups were identified in this study including homozygous extensive metabolizer (13 of 57, 22.80%), extensive/intermediate metabolizer (23 of 57, 40.40%), extensive/poor metabolizer (3 of 57, 5.30%), homozygous intermediate metabolizer (14 of 57, 24.50%), and intermediate/poor metabolizer (4 of 57, 7.00%), and three CYP2C19 genotype groups including homozygous extensive metabolizer (27 of 57, 47.40%), extensive/intermediate metabolizer (27 of 57, 47.40%), and homozygous poor metabolizer (3 of 57, 5.30%). The CYP2D6 variant alleles were *10 (52 of 114, 45.60%), *5 (5 of 114, 4.40%), *41 (2 of 114, 1.80%), *4 (1 of 114, 0.90%), and *36 (1 of 114, 0.90%); the CYP2C19 variant alleles were *2 (27 of 114, 23.70%) and *3 (6 of 114, 5.30%). Kaplan-Meier estimates showed significantly shorter disease-free survival in patients with homozygous TT when compared to those with heterozygous CT or homozygous CC at nucleotides 100C>T and 1039C>T (CYP2D6*10) post-menopausal (log-rank test; P = 0.046). They also had increased risk of recurrence, but no statistically significant association was observed (hazard ratio 3.48; 95% confidence interval 0.86-14.07; P = 0.080). CONCLUSION: The CYP2D6 and CYP2C19 polymorphisms were not involved in tamoxifen efficacy. However, in the subgroup of post-menopausal women, the polymorphisms in CYP2D6 and CYP2C19 might be useful in predicting tamoxifen efficacy and clinical outcomes in breast cancer patients receiving adjuvant tamoxifen treatment. As the number of breast cancer patients was relatively small in this study, results should be confirmed in a larger group of prospective patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA