Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 622(7982): 383-392, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731001

RESUMEN

CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the ß1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of ß1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, ß-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking ß-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.


Asunto(s)
Linfocitos T CD8-positivos , Catecolaminas , Receptores Adrenérgicos beta 1 , Sistema Nervioso Simpático , Agotamiento de Células T , Humanos , Antígenos/inmunología , Antígenos/metabolismo , Catecolaminas/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/terapia , Células T de Memoria/citología , Células T de Memoria/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervioso Simpático/inmunología , Sistema Nervioso Simpático/fisiología , Estrés Fisiológico
2.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993220

RESUMEN

Innate and goal-directed movements require a high-degree of trunk and appendicular muscle coordination to preserve body stability while ensuring the correct execution of the motor action. The spinal neural circuits underlying motor execution and postural stability are finely modulated by propriospinal, sensory and descending feedback, yet how distinct spinal neuron populations cooperate to control body stability and limb coordination remains unclear. Here, we identified a spinal microcircuit composed of V2 lineage-derived excitatory (V2a) and inhibitory (V2b) neurons that together coordinate ipsilateral body movements during locomotion. Inactivation of the entire V2 neuron lineage does not impair intralimb coordination but destabilizes body balance and ipsilateral limb coupling, causing mice to adopt a compensatory festinating gait and be unable to execute skilled locomotor tasks. Taken together our data suggest that during locomotion the excitatory V2a and inhibitory V2b neurons act antagonistically to control intralimb coordination, and synergistically to coordinate forelimb and hindlimb movements. Thus, we suggest a new circuit architecture, by which neurons with distinct neurotransmitter identities employ a dual-mode of operation, exerting either synergistic or opposing functions to control different facets of the same motor behavior.

3.
STAR Protoc ; 3(1): 101130, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35146446

RESUMEN

microRNAs (miRNAs) have unique gene regulatory effects in different neuronal subpopulations. Here, we describe a protocol to identify neuronal subtype-specific effects of a miRNA in murine motor neuron subpopulations. We detail the preparation of primary mouse spinal tissue for single cell RNA sequencing and bioinformatics analyses of pseudobulk expression data. This protocol applies differential gene expression testing approaches to identify miRNA target networks in heterogeneous neuronal subpopulations that cannot otherwise be captured by bulk RNA sequencing approaches. For complete details on the use and execution of this protocol, please refer to Amin et al. (2021).


Asunto(s)
MicroARNs , Animales , Biología Computacional/métodos , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , Neuronas , Análisis de Secuencia de ARN
4.
Neuron ; 109(20): 3252-3267.e6, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34450025

RESUMEN

Disruption of homeostatic microRNA (miRNA) expression levels is known to cause human neuropathology. However, the gene regulatory and phenotypic effects of altering a miRNA's in vivo abundance (rather than its binary gain or loss) are not well understood. By genetic combination, we generated an allelic series of mice expressing varying levels of miR-218, a motor neuron-selective gene regulator associated with motor neuron disease. Titration of miR-218 cellular dose unexpectedly revealed complex, non-ratiometric target mRNA dose responses and distinct gene network outputs. A non-linearly responsive regulon exhibited a steep miR-218 dose-dependent threshold in repression that, when crossed, resulted in severe motor neuron synaptic failure and death. This work demonstrates that a miRNA can govern distinct gene network outputs at different expression levels and that miRNA-dependent phenotypes emerge at particular dose ranges because of hidden regulatory inflection points of their underlying gene networks.


Asunto(s)
Dosificación de Gen , Redes Reguladoras de Genes/genética , MicroARNs/genética , Enfermedad de la Neurona Motora/genética , Neuronas Motoras/metabolismo , Animales , Ratones , Ratones Noqueados , Análisis de Secuencia de ARN , Análisis de la Célula Individual
5.
Neuron ; 107(2): 274-282.e6, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32396852

RESUMEN

Single-cell transcriptomics of neocortical neurons have revealed more than 100 clusters corresponding to putative cell types. For inhibitory and subcortical projection neurons (SCPNs), there is a strong concordance between clusters and anatomical descriptions of cell types. In contrast, cortico-cortical projection neurons (CCPNs) separate into surprisingly few transcriptomic clusters, despite their diverse anatomical projection types. We used projection-dependent single-cell transcriptomic analyses and monosynaptic rabies tracing to compare mouse primary visual cortex CCPNs projecting to different higher visual areas. We find that layer 2/3 CCPNs with different anatomical projections differ systematically in their gene expressions, despite forming only a single genetic cluster. Furthermore, these neurons receive feedback selectively from the same areas to which they project. These findings demonstrate that gene-expression analysis in isolation is insufficient to identify neuron types and have important implications for understanding the functional role of cortical feedback circuits.


Asunto(s)
Neuronas/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Retroalimentación , Femenino , Expresión Génica , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/citología , Neocórtex/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/clasificación , Virus de la Rabia , Transcriptoma , Corteza Visual/citología , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA