Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(6): 5420-5435, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38920996

RESUMEN

Melanocytes, located in the epidermis' basal layer, are responsible for melanin pigment production, crucial for skin coloration and protection against UV radiation-induced damage. Melanin synthesis is intricately regulated by various factors, including the Wnt signaling pathway, particularly mediated by the microphthalmia-associated transcription factor (MITF). While MITF is recognized as a key regulator of pigmentation, its regulation by the Wnt pathway remains poorly understood. This study investigates the role of Sfrp5pepD, a peptide antagonist of the Wnt signaling pathway, in modulating melanogenesis and its potential therapeutic implications for pigmentary disorders. To tackle this issue, we investigated smaller peptides frequently utilized in cosmetics or pharmaceuticals. Nevertheless, there is a significant scarcity of reports on peptides associated with melanin-related signal modulation or inhibiting melanin production. Results indicate that Sfrp5pepD effectively inhibits Wnt signaling by disrupting the interaction between Axin-1 and ß-catenin, thus impeding downstream melanogenic processes. Additionally, Sfrp5pepD suppresses the interaction between MITF and ß-catenin, inhibiting their nuclear translocation and downregulating melanogenic enzyme expression, ultimately reducing melanin production. These inhibitory effects are validated in cell culture models suggesting potential clinical applications for hyperpigmentation disorders. Overall, this study elucidates the intricate interplay between Wnt signaling and melanogenesis, highlighting Sfrp5pepD as a promising therapeutic agent for pigmentary disorders. Sfrp5pepD, with a molecular weight of less than 500 Da, is anticipated to penetrate the skin unlike SFRPs. This suggests a strong potential for their use as cosmetics or transdermal absorption agents. Additional investigation into its mechanisms and clinical significance is necessary to enhance its effectiveness in addressing melanin-related skin conditions.

2.
Curr Issues Mol Biol ; 46(1): 513-526, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38248335

RESUMEN

The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.

3.
Curr Issues Mol Biol ; 45(12): 10159-10178, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38132480

RESUMEN

The process of skin aging is currently recognized as a disease, and extracellular vesicles (EVs) are being used to care for it. While various EVs are present in the market, there is a growing need for research on improving skin conditions through microbial and plant-derived EVs. Edelweiss is a medicinal plant and is currently an endangered species. Callus culture is a method used to protect rare medicinal plants, and recently, research on EVs using callus culture has been underway. In this study, the researchers used LED light to increase the productivity of Edelweiss EVs and confirmed that productivity was enhanced by LED exposure. Additionally, improvements in skin anti-aging indicators were observed. Notably, M-LED significantly elevated callus fresh and dry weight, with a DW/FW ratio of 4.11%, indicating enhanced proliferation. Furthermore, M-LED boosted secondary metabolite production, including a 20% increase in total flavonoids and phenolics. The study explores the influence of M-LED on EV production, revealing a 2.6-fold increase in concentration compared to darkness. This effect is consistent across different plant species (Centella asiatica, Panax ginseng), demonstrating the universality of the phenomenon. M-LED-treated EVs exhibit a concentration-dependent inhibition of reactive oxygen species (ROS) production, surpassing dark-cultured EVs. Extracellular melanin content analysis reveals M-LED-cultured EVs' efficacy in reducing melanin production. Additionally, the expression of key skin proteins (FLG, AQP3, COL1) is significantly higher in fibroblasts treated with M-LED-cultured EVs. These results are expected to provide valuable insights into research on improving the productivity of plant-derived EVs and enhancing skin treatment using plant-derived EVs.

4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762597

RESUMEN

The use of face masks during the COVID-19 pandemic resulted in significant societal changes, particularly for individuals with sensitive skin. To address this issue, the researchers explored traditional medicine and identified Potentilla anserina extract as a potential solution due to its anti-inflammatory and moisturizing effects. This research investigated how this extract influences skin hydration, barrier function, and itching. The findings revealed that the extract had a hydrating effect by elevating Aquaporin-3 (AQP3) expression. Additionally, the study demonstrated that the extract improved skin barrier function, with Filaggrin (FLG) expression being approximately three times higher (p < 0.001) in the Potentilla-anserina-extract-treated group compared to the control group and the genes associated with itching being reduced. In this process, we researched and developed HPßCD (hydroxypropyl-ß-cyclodextrin)-Liposome containing Potentilla anserina extract, gradually and sustainably releasing the active components of the Potentilla anserina extract. During four weeks of clinical trials involving individuals wearing masks for over 6 h a day, a moisturizer containing Potentilla anserina extract demonstrated a notable reduction in skin redness. Hemoglobin values (A.U.), which serve as indicators of skin redness, showed decreases of 5.06% and 6.74% in the test area inside the mask after 2 and 4 weeks, respectively, compared to the baseline measurements. Additionally, the moisturizer containing Potentilla anserina extract notably decreased Trans Epidermal Water Loss (TEWL), with reductions of 5.23% and 9.13% observed in the test area inside the mask after 2 and 4 weeks, respectively. The moisturizer, especially in the test area treated with the extract-containing moisturizer, significantly enhanced skin hydration compared to the control group. The Corneometer values (A.U) exhibited notable increases of 11.51% and 15.14% in the test area inside the mask after 2 and 4 weeks, respectively. These discoveries emphasize the potential of Potentilla anserina extract and its utility in tackling skin issues caused by mask wearing, including enhancing moisture, fortifying the skin's barrier, and alleviating itching. These results indicate that moisturizers incorporating specific ingredients provide greater benefits compared to conventional moisturizers.


Asunto(s)
COVID-19 , Potentilla , Humanos , Máscaras , Pandemias , Prurito , 2-Hidroxipropil-beta-Ciclodextrina
5.
Curr Issues Mol Biol ; 44(2): 526-540, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35723322

RESUMEN

Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin's ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA