Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Phytomedicine ; 130: 155747, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788397

RESUMEN

BACKGROUND: Chronic inflammation, which becomes more prevalent during aging, contributes to sarcopenia by reducing muscle mass and strength. PURPOSE: Wheat seedlings extract (WSE) is known for its various physiological activities, including anti-inflammation and antioxidant effects. However, its efficacy against sarcopenia is not well documented. STUDY DESIGN: 8-week-old and 50-week-old C57BL/6 J mice were used as young control (YC group) and aged controls (AC group), respectively. Then, aged mice were randomly divided into 5 groups (WSE100mg/kg, WSE200mg/kg, WSE400mg/kg, and schizandrin as a positive control) and fed each experimental diet for 10 weeks. METHOD: We investigated the effects of WSE on muscle quality and protein homeostasis pathways based on improvements in mitochondrial function and chronic inflammation. We then used TNFα-treated C2C12 to investigate the effects of isoorientin (ISO) and isoschaftoside (ISS), the active substances of WSE, on the myogenic pathway. RESULTS: We administered WSE to aging mice and observed an increase in muscle mass, thickness, protein content, and strength in mice treated with WSE at a dose of 200 mg/kg or 400 mg/kg. Furthermore, the administration of WSE led to a reduction in inflammatory factors (TNFα, IL-1, and IL-6) and an increase in mitochondrial biogenesis (p-AMPK/SIRT3/PGC1α) in muscle. This effect was also observed in TNFα-induced muscle atrophy in C2C12 cells, and we additionally identified the upregulation of myogenic regulatory factors, including Myf5, Myf6, MyoD, and myogenin, by WSE, ISO, and ISS. CONCLUSION: These findings suggest that WSE could function as a dietary anti-inflammatory factor and mitochondrial activator, potentially exerting modulatory effects on the metabolism and mechanical properties of skeletal muscles in the aging population. Furthermore, Our results demonstrate the potential value of ISO and ISS as functional food ingredients for preventing muscle atrophy.

2.
ACS Omega ; 9(9): 10852-10859, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463256

RESUMEN

Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights. A higher quantity of blue-rich white light (6500 K of light temperature) irradiation enhanced ROS levels and the related enzyme activities (APX and CAT), as well as photosynthesis and saponarin amount, while red-rich white light (3000 K of light temperature) increased the photosynthesis only. In addition, 1.0 g L-1 K+ treatment in water slightly reduced ROS levels and increased saponarin accumulation in YBL. These blue-rich light and K+ supplemental conditions relatively increased OGT expression and reduced 4-coumaric acid and isovitexin as saponarin precursors. Furthermore, the relative ratio of lutonarin as an oxidized product of saponarin increased in increments of light quantity. Finally, the abiotic conditions for saponarin production were optimized with the mixture solution treatment of 1.0 g L-1 Na+ and 1.0 g L-1 K+ under 500 PPFD of 6500 K light, and the saponarin amount per leaf was 219.5 µg plant-1; it was comparable amount with that under sunlight condition.

3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139104

RESUMEN

Oats (Avena sativa L.) are used as therapeutic plants, particularly in dermatology. Despite numerous studies on their skin moisturization, anti-inflammation, and antioxidation effects, the precise molecular mechanisms of these effects are only partially understood. In this study, the efficacy of oat sprouts in the treatment of allergic contact dermatitis (ACD) was investigated, and their specific phytoconstituents and exact mechanisms of action were identified. In the in vivo ACD model, by stimulating the mitogen-activated protein kinase signaling pathway, oat sprouts increased the expression levels of proteins associated with skin barrier formation, which are produced during the differentiation of keratinocytes. In addition, in a lipopolysaccharide-induced skin irritation model using HaCaT, steroidal saponins (avenacoside B and 26-deglucoavenacoside B) and a flavonoid (isovitexin-2-o-arabinoside) of oat sprouts regulated the genetic expression of the same proteins located on the adjacent locus of human chromosomes known as the epidermal differentiation complex (EDC). Furthermore, oat sprouts showed immunomodulatory functions. These findings suggest the potential for expanding the use of oat sprouts as a treatment option for various diseases characterized by skin barrier disruption.


Asunto(s)
Avena , Extractos Vegetales , Humanos , Avena/genética , Extractos Vegetales/farmacología , Inflamación , Piel , Antiinflamatorios , Grano Comestible
4.
ACS Omega ; 8(39): 35837-35844, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810714

RESUMEN

Saponarin is a functional metabolite produced by barley sprouts, and the mass production of saponarin by this crop is attractive for dietary supplement manufacturing. Light is the most important environmental factor determining plant growth, survival, and the production of secondary metabolites including flavonoids. This study was conducted to investigate the importance of light intensity for saponarin production in barley sprouts using a hydroponic growth system. Light intensity was manipulated by using shielding treatments to 100, 80, 70, and 50% natural sunlight (NS), and crop cultivation was performed on a monthly cycle. We found that the growth rate and biomass of barley sprouts did not differ in response to the shield treatments, whereas the saponarin content did. The highest saponarin content (i.e., from 1329 to 1673 mg 100 g-1) was observed in the 100% NS treatment, and it gradually decreased as light intensity also decreased. Statistical analysis revealed a significant polynomial relationship of saponarin content with cumulative PPFD (R2 = 76%), implying that the absolute total amount of light exposure over the growth period has a large effect on saponarin productivity in a hydroponic facility. Taken together, our results showed that shielding conditions, which are often unintentionally created by the design of cultivation facilities, can adversely affect saponarin production in barley sprouts. In addition, it was confirmed through our findings that light conditions with at least 70% NS in the cultivation facility enable the production of an amount corresponding to the saponarin content of the sprouts (>1000 mg 100 g-1) produced in the open field. Further studies are needed to investigate the underlying physiological and molecular mechanisms responsible for the relationship of saponarin content with light quantity and quality in barley sprouts.

5.
ACS Omega ; 8(25): 22285-22295, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396229

RESUMEN

Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.

6.
Food Res Int ; 169: 112831, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254406

RESUMEN

Sesame seeds contain several lipids and fragrances that offer health benefits. However, no studies have reported a relationship between the lipids or flavor compounds of sesame seeds and environmental factors. In this study, we aimed to identify this relationship by analyzing the contents of lipidic and flavor compounds in fifteen genotypes of sesame seeds grown in two cultivation regions (Jeonju and Miryang) and years (2018 and 2019). Herein, 17 lipids and 62 flavor compounds were detected. Multivariate statistical analyses revealed that the cultivation year had a larger influence on the contents of lipidic and flavor compounds than the cultivation region and genotype. Furthermore, heat stress due to high cultivation temperature in 2018 caused the accumulation of sugar and secondary metabolites, increased flavor-related substances, and inhibited the degradation of fatty acids. Our study is the first to demonstrate the metabolic changes in lipids and flavor components of sesame in response to environmental temperature changes affected by different cultivation years. Therefore, this study provides guidance for the cultivation of commercially advantageous sesame seeds in improving the quality of sesame seeds and their products.


Asunto(s)
Sesamum , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Temperatura , Ácidos Grasos/metabolismo , Odorantes
7.
Plant Foods Hum Nutr ; 78(1): 146-153, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36380140

RESUMEN

Cold plasma treatment has been studied to enhance the germination, growth, and bioactive phytochemical production in crops. Here, we aimed to investigate the effects of cold plasma treatment on the growth, bioactive metabolite production, and protein expression related to the physiological and osteogenic activities of oat sprouts. Oat seeds were soaked for 12 h, and then exposed to plasma for 6 min/day for 3 days after sowing. Plasma exposure did not significantly change the growth of oat sprouts; however, increased the content of bioactive metabolites. A single exposure for 6 min on the first day (T-1) increased the content of free amino acids (39.4%), γ-aminobutyric acid (53%), and avenacoside B (23%) compared to the control. Hexacosanol content was the highest in T-3 (6 min exposure on each day for 3 days), 28% higher than that in the control. Oat sprout extracts induced the phosphorylation of adenosine 5'-monophosphate-activated protein kinase and osteoblast differentiation was enhanced by increasing the alkaline phosphatase (ALP) activity; all these effects were induced by plasma treatment. Avenacoside B content was positively correlated with ALP activity (r = 0.911, p < 0.1). These results suggest that plasma treatment has the potential to improve the value of oat sprouts and that it may be used in food fortification to enhance nutritional value for promoting human health.


Asunto(s)
Avena , Gases em Plasma , Humanos , Avena/química , Avena/metabolismo , Gases em Plasma/análisis , Gases em Plasma/metabolismo , Germinación , Antioxidantes/farmacología , Fitoquímicos/análisis , Semillas/química
8.
Nutrients ; 14(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36235754

RESUMEN

The physiological or dietary advantages of germinated grains have been the subject of numerous discussions over the past decade. Around 23 million tons of oats are consumed globally, making up a sizeable portion of the global grain market. Oat seedlings contain more protein, beta-glucan, free amino acids, and phenolic compounds than seeds. The progressive neurodegenerative disorder of Alzheimer's is accompanied by worsening memory and cognitive function. A key indicator of this disorder is the unusual buildup of amyloid-beta protein (or Aß) in human brains. In this context, oat seedling extract (OSE) has been identified as a new therapeutic candidate for AD, due to its antioxidant activity and AD-specific mechanism of action. This study directly investigated how OSE affected AD and its impacts by examining the cognitive function and exploring the inflammatory response mechanism. The dried oat seedlings were grounded finely with a grinder, inserted with 50% fermented ethanol 10 times (w/v), and extracted by stirring for 10 h at 45 °C. After filtering the extract by 0.22 um filter, some of it was used for UHPLC analysis. The results indicated that the treatment with OSE protects against Aß25-35-induced cytotoxicity in BV2 cells. Tg-5Xfad AD mice had strong deposition of Aß throughout their brains, while WT mice did not exhibit any such deposition within their brains. A drastic reduction was observed in terms of numbers, as well as the size, of Aß plaques within Tg-5Xfad AD mice exposed to OSE. This study indicated OSE's neuroprotective impacts against neurodegeneration, synaptic dysfunction, and neuroinflammation induced by amyloid-beta. Our results suggest that OSE acts as a neuroprotective agent to combat AD-specific apoptotic cell death, neuroinflammation, amyloid-beta accumulation, as well as synaptic dysfunction in AD mice's brains. Furthermore, the study indicated that OSE treatment affects JNK/ERK/p38 MAPK signaling, with considerable inhibition in p-JNK, p-p38, and p-ERK levels seen in the brain of OSE-treated Tg-5Xfad AD mice.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , beta-Glucanos , Enfermedad de Alzheimer/metabolismo , Aminoácidos/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Avena , Modelos Animales de Enfermedad , Etanol , Humanos , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Plantones/metabolismo , beta-Glucanos/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos
9.
Artículo en Inglés | MEDLINE | ID: mdl-36193131

RESUMEN

Osteoporosis is a common disease that increases the risk of fractures due to decreased bone density and weakens the bone microstructure. Preventing and diagnosing osteoporosis using the available drugs can be a costly affair with possible side effects. Therefore, natural product-derived therapeutics are promising alternatives. Our study demonstrated that the oat seedlings' extract (OSE) inhibited the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis from the bone marrow-derived macrophages (BMMs). The OSE treatment significantly attenuated the RANKL-mediated induction of the tartrate-resistant acid phosphatase (TRAP) activity as well as the number of TRAP-positive (TRAP+) multinucleated cells (MNCs) counted through the TRAP staining in a dose-dependent manner. It was also confirmed that the OSE suppressed the formation of the TRAP + MNCs in the early stage of differentiation and not in the middle and late stages. The results of the real-time quantitative polymerase chain reaction (qPCR) and the western blotting showed that the OSE dramatically inhibited the mRNA and protein expressions of the osteoclastogenesis-mediated transcription factors such as the c-Fos and the nuclear factor-activated T cells c1 (NFATc1). In addition, the OSE strongly attenuated the mRNA induction of the c-Fos/NFATc1-dependent molecules such as the TRAP, the osteoclast-associatedimmunoglobulin-like receptor (OSCAR), the dendritic cell-specific transmembrane protein (DC-STAMP), and the cathepsin K. These results suggest that the naturally derived OSE may be useful for preventing bone diseases.

10.
Plants (Basel) ; 11(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890478

RESUMEN

The objectives of this research were to evaluate the policosanol profiles and adenosine-5'-monophosphate-activated protein kinase (AMPK) properties in the seedlings of Korean oat (Avena sativa L.) cultivars at different growth times. Nine policosanols in the silylated hexane extracts were detected using GC-MS and their contents showed considerable differences; specifically, hexacosanol (6) exhibited the highest composition, constituting 88-91% of the total average content. Moreover, the average hexacosanol (6) contents showed remarkable variations of 337.8 (5 days) → 416.8 (7 days) → 458.9 (9 days) → 490.0 (11 days) → 479.2 (13 days) → 427.0 mg/100 g (15 days). The seedlings collected at 11 days showed the highest average policosanol content (541.7 mg/100 g), with the lowest content being 383.4 mg/100 g after 5 days. Interestingly, policosanols from oat seedlings grown for 11 days induced the most prevalent phenotype of AMPK activation in HepG2 cells, indicating that policosanols are an excellent AMPK activator.

11.
Food Chem ; 373(Pt B): 131429, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34731801

RESUMEN

Oats and their seeds, stems, and leaves are approved for use as safe food ingredients. Oat seedlings are environmentally friendly and are becoming increasingly popular as they provide several health benefits. We used the UPLC-CAD to quantitatively analyze isolated compounds (1-11) between 15 cultivars of oat seedlings and their harvest time. Maximum average amount of total contents of isolated compounds was observed after the harvest time of 5 days (4711.3 mg/100 g), while the minimum was observed after the harvest time of 7 days (4184.8 mg/100 g). We demonstrated that all isolated compounds (1-11) showed neuraminidase inhibitory effects, with 6 and 7 being the most active with IC50 values of 3.7 and 20.5 µM, respectively. High content of compounds 6 and 7 was observed (2306.6 mg/100 g) in the Dahan cultivar at 9 days, indicating potential good cultivars with a high content of active compounds and neuraminidase inhibition activity.


Asunto(s)
Avena , Plantones , Grano Comestible , Neuraminidasa/genética , República de Corea
12.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809304

RESUMEN

Extracts from barley seedlings (BS) have known antioxidant and anti-inflammatory activities. The flavonoid lutonarin (LN) is a component of BS extract and has several known bioactivities. Here, we evaluated LN anti-inflammatory efficacy against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Lutonarin was isolated from BS by methanol extraction and characterized by ultra-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Lutonarin did not reduce the viability or enhance the apoptosis rate of RAW 264.7 macrophages at concentrations up to 150 µM. Concentrations within 20-60 µM dose-dependently suppressed the LPS-induced expression, phosphorylation, and nuclear translocation of the inflammatory transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LN suppressed the LPS-induced upregulation of proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α and of the inflammatory enzyme cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Lutonarin may be a safe and effective therapeutic agent for alleviation of pathological inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Flavonoides/farmacología , Glicósidos/farmacología , Hordeum/química , Macrófagos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Ciclooxigenasa 2/metabolismo , Flavonoides/aislamiento & purificación , Glicósidos/aislamiento & purificación , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/prevención & control , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Células RAW 264.7 , Plantones/química , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
13.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435366

RESUMEN

Retinal pigment epithelium (RPE) cell dysfunction caused by excessive oxidative damage is partly involved in age-related macular degeneration, which is among the leading causes of visual impairment in elderly people. Here, we investigated the protective role of chrysoeriol against hydrogen peroxide (H2O2)-induced oxidative stress in RPE cells. The cellular viability, reactive oxygen species (ROS) generation, and mitochondrial function of retinal ARPE-19 cells were monitored under oxidative stress or pre-treatment with chrysoeriol. The expression levels of mitochondrial-related genes and associated transcription factors were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Moreover, the protein expression of antioxidant signal molecules was characterized by Western blot analysis. Chrysoeriol significantly increased cell viability, reduced ROS generation, and increased the occurrence of antioxidant molecules in H2O2-treated ARPE-19 cells. Additionally, mitochondrial dysfunction caused by H2O2-induced oxidative stress was also considerably diminished by chrysoeriol treatment, which reduced the mitochondrial membrane potential (MMP) and upregulated mitochondrial-associated genes and proteins. Chrysoeriol also markedly enhanced key transcription factors (Nrf2) and antioxidant-associated genes (particularly HO-1 and NQO-1). Therefore, our study confirms the protective effect of chrysoeriol against H2O2-induced oxidative stress in RPE cells, thus confirming that it may prevent mitochondrial dysfunction by upregulating antioxidant-related molecules.


Asunto(s)
Antioxidantes/farmacología , Flavonas/farmacología , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular , Flavonas/química , Flavonas/aislamiento & purificación , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Food Chem ; 346: 128882, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33412486

RESUMEN

The aim of the present research was to investigate the antioxidant properties and anthocyanin profiles in the black seed coated adzuki bean (Vigna angularis, Geomguseul cultivar). The acidic 60% methanol extract (40 µg/mL) contains the highest total phenolic and flavonoid contents (486 ± 3 mg GAE/100 g; 314 ± 10 mg CE/100 g) with potent antioxidant properties (trolox equivalent 1272 ± 26 and 662 ± 24 mg TE/100 g) against ABTS and DPPH radicals compared to other methanol-water ratios (20, 40, 80, and 100%). Ten anthocyanin components were identified in this extract including delphinidin-3,5-O-digalactoside (1), delphinidin-3,5-O-diglucoside (2), delphinidin-3-O-galactoside (3), delphinidin-3-O-glucoside (4), delphinidin-3-O-rutinoside (5), delphinidin-3-O-(p-coumaroyl)glucoside (6), cyanidin-3-O-glucoside (7), petunidin-3-O-galactoside (8), petunidin-3-O-glucoside (9) and petunidin-3-O-(p-coumaroyl)glucoside (10) via NMR spectroscopy and UPLC-Q-Orbitrap-MS/MS analysis. The key anthocyanins 3 and 4 of delphinidin type were isolated by reversed phase C-18 MPLC. Our results indicate that the anthocyanin profiles as well as the high phenolic and flavonoid contents are important factors determining the antioxidant effects of black adzuki bean.


Asunto(s)
Antocianinas/química , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem , Vigna/química , Antocianinas/análisis , Cromatografía de Fase Inversa , Flavonoides/química , Fenoles/química , Extractos Vegetales/química , República de Corea , Semillas/química , Semillas/metabolismo , Solventes/química , Vigna/metabolismo
15.
Plants (Basel) ; 9(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172036

RESUMEN

The spectral quality and intensity of light, photoperiodism, and other environmental factors have profound impacts on the metabolic composition of light-dependent higher plants. Hence, we investigate the effects of fluorescent light (96 µmol m-2s-1) and white (100 µmol m-2s-1), blue (100 µmol m-2s-1), and red (93 µmol m-2s-1) light-emitting diode (LED) light irradiation on the C-glycosylflavone and policosanol contents in young seedlings of wheat and barley. Ultra-high-performance liquid chromatography (UHPLC) analyses of C-glycosylflavone contents in barley reveal that the saponarin content is significantly enhanced under blue LED light irradiation. Under similar conditions, isoorientin and isoschaftoside contents are improved in wheat seedlings. The contents of these C-glycosylflavones differed along with the light quality and growth period. The highest accumulation was observed in sprouts after three days under blue LED light irradiation. GC/MS analyses of policosanol contents showed that 1-hexacosanol (C26:o-OH) in barley and 1-octacosanol (C28:o-OH) in wheat seedlings were reduced under LED light irradiation, compared to seedlings under fluorescent light conditions. Nonetheless, the policosanol contents gradually improved with the extension of growth times and treatments, irrespective of the light quality. Additionally, a positive correlation was observed between the expression pattern of biosynthesis-related genes and the respective metabolite content in barley. This study demonstrates that blue LED light irradiation is useful in maximizing the C-glycosylflavone content in barley and wheat sprouts.

16.
Foods ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722105

RESUMEN

Perilla and sesame are traditional sources of edible oils in Asian and African countries. In addition, perilla and sesame seeds are rich sources of health-promoting compounds, such as fatty acids, tocopherols, phytosterols and policosanols. Thus, developing a method to determine the geographic origin of these seeds is important for ensuring authenticity, safety and traceability and to prevent cheating. We aimed to develop a discriminatory predictive model for determining the geographic origin of perilla and sesame seeds using comprehensive metabolite profiling coupled with chemometrics. The orthogonal partial least squares-discriminant analysis models were well established with good validation values (Q2 = 0.761 to 0.799). Perilla and sesame seed samples used in this study showed a clear separation between Korea and China as geographic origins in our predictive models. We found that glycolic acid could be a potential biomarker for perilla seeds and proline and glycine for sesame seeds. Our findings provide a comprehensive quality assessment of perilla and sesame seeds. We believe that our models can be used for regional authentication of perilla and sesame seeds cultivated in diverse geographic regions.

17.
Bioorg Med Chem Lett ; 30(14): 127250, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32527550

RESUMEN

Seedlings of natural crops are valuable sources of pharmacologically active phytochemicals. In this study, we aimed to identify new active secondary metabolites in Avena sativa L. (oat) seedlings. Two new compounds, avenafuranol (1) and diosgenoside (2), along with eight known compounds (3-10) were isolated from the A. sativa L. seedlings. Their chemical structures were elucidated via 1D and 2D NMR spectroscopy, high-resolution ESIMS, IR spectroscopy, optical rotation analysis, and comparisons with the reported literature. The effect of each isolated compound on alkaline phosphatase (ALP) activity for osteoblast differentiation induced by bone morphogenetic protein-2 (BMP-2) was investigated using the C2C12 immortal mouse myoblast cell line. Compounds 1, 4, 6, 8, and 9 induced dose-dependent increases in ALP expression relative to ALP expression in cells treated with only BMP-2, and no cytotoxicity was observed. These results suggest that A. sativa L. seedlings are a natural source of compounds that may be useful for preventing bone disorders.


Asunto(s)
Avena/química , Osteoblastos/efectos de los fármacos , Animales , Avena/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Plantones/metabolismo , Relación Estructura-Actividad
18.
Metabolites ; 10(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192187

RESUMEN

As international food trade increases, consumers are becoming increasingly interested in food safety and authenticity, which are linked to geographical origin. Adzuki beans (Vigna angularis) are cultivated worldwide, but there are no tools for accurately discriminating their geographical origin. Thus, our study aims to develop a method for discriminating the geographical origin of adzuki beans through targeted and non-targeted metabolite profiling with gas chromatography time-of-flight mass spectrometry combined with multivariate analysis. Orthogonal partial least squares discriminant analysis showed clear discrimination between adzuki beans cultivated in Korea and China. Non-targeted metabolite profiling showed better separation than targeted profiling. Furthermore, citric acid and malic acid were the most notable metabolites for discriminating adzuki beans cultivated in Korea and China. The geographical discrimination method combining non-targeted metabolite profiling and pareto-scaling showed excellent predictability (Q2 = 0.812). Therefore, it is a suitable prediction tool for the discrimination of geographical origin and is expected to be applicable to the geographical authentication of adzuki beans.

19.
Food Chem ; 317: 126388, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32078993

RESUMEN

Policosanols is a health promoting aliphatic alcohol known as lipid-lowing agent. To enable maximising the functional properties of wheat, this research investigates the policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedlings according to cultivars and growth times. GC-MS revealed six policosanols that differed markedly in content between 17 cultivars, especially, octacosanol (8) showed the most predominant component (49-83%), varying significantly in average concentrations with growth times as 361.4 (3 days) â†’ 613.0 (6 days) â†’ 203.1 (9 days) â†’ 196.5 (12 days) â†’ 50.9 mg/100 g (19 days). The highest average policosanol (738.7 mg/100 g) exhibited after 6 days, while the lowest was 104.4 mg/100 g on 19 days. Moreover, the wheat cultivars including Shinmichal 1, Anbaek, Namhae, and Joah at 6 days may be recommended as potential sources because of high policosanols (921.7-990.6 mg/100 g). Western blot analysis revealed markedly higher AMPK activation in cells treated with the hexane extracts (150-370% at 100 µg/ml) and octacosanol (8) possessed potent AMPK activator (control; 100 â†’ 280% at 200 µg/ml). It is confirmed that the AMPK activation by wheat seedlings are positively related to the highest policosanol content at the 6 days of growth time, independent of the cultivar. Our results may be contributed to enhance the wheat value regarding development of new cultivars and functional foods.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Alcoholes Grasos/análisis , Extractos Vegetales/química , Triticum/química , Activación Enzimática , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Plantones/química , Plantones/enzimología , Plantones/crecimiento & desarrollo , Triticum/enzimología , Triticum/crecimiento & desarrollo
20.
Phytother Res ; 33(5): 1490-1500, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30883927

RESUMEN

Improvement of bone formation is necessary for successful treatment of the bone defects associated with osteoporosis. In this study, we sought to elucidate the osteogenic activity of peanut sprouts and their bioactive components. We found that peanut sprout water extract (PSWE) enhanced bone morphogenetic protein-2-mediated osteoblast differentiation in a dose-dependent manner by stimulating expression of runt-related transcription factor 2 (Runx2) via activation of AKT/MAP kinases. We identified a major component of PSWE, soyasaponin Bb, as the bioactive compound responsible for improvement of anabolic activity. Soyasaponin Bb from PSWE enhanced expression of the osteogenic transcription factor Runx2 and alkaline phosphatase. The soyasaponin Bb content depended on sprouting time of peanut, and the anabolic action of PSWE was dependent on soyasaponin Bb content. Thus, PSWE and soyasaponin Bb have the potential to protect against bone disorders, including osteoporosis.


Asunto(s)
Arachis/química , Proteínas Morfogenéticas Óseas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Osteoporosis/dietoterapia , Saponinas/metabolismo , Plantones/química , Diferenciación Celular , Proliferación Celular , Osteoporosis/patología , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA