Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Neurosci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831039

RESUMEN

Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.

2.
Brain Behav Immun Health ; 36: 100731, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435722

RESUMEN

Objective: This study assessed the proteomic profiles of cytokines and chemokines in individuals with moderate to severe depression, with or without comorbid medical disorders, compared to healthy controls. Two proteomic multiplex platforms were employed for this purpose. Metods: An immunofluorescent multiplex platform and an aptamer-based method were used to evaluate 32 protein analytes from 153 individuals with moderate to severe major depressive disorder (MDD) and healthy controls (HCs). The study focused on determining the level of agreement between the two platforms and evaluating the ability of individual analytes and principal components (PCs) to differentiate between the MDD and HC groups. Additionally, the study investigated the relationship between PCs consisting of chemokines and cytokines and comorbid inflammatory and cardiometabolic diseases. Findings: Analysis revealed a small or moderate correlation between 47% of the analytes measured by the two platforms. Two proteomic profiles were identified that differentiated individuals with moderate to severe MDD from HCs. High eotaxin, age, BMI, IP-10, or IL-10 characterized profile 1. This profile was associated with several cardiometabolic risk factors, including hypertension, hyperlipidemia, and type 2 diabetes. Profile 2 is characterized by higher age, BMI, interleukins, and a strong negative loading for eotaxin. This profile was associated with inflammation but not cardiometabolic risk factors. Conclusion: This study provides further evidence that proteomic profiles can be used to identify potential biomarkers and pathways associated with MDD and comorbidities. Our findings suggest that MDD is associated with distinct profiles of proteins that are also associated with cardiometabolic risk factors, inflammation, and obesity. In particular, the chemokines eotaxin and IP-10 appear to play a role in the relationship between MDD and cardiometabolic risk factors. These findings suggest that a focus on the interplay between MDD and comorbidities may be useful in identifying potential targets for intervention and improving overall health outcomes.

3.
Commun Biol ; 7(1): 200, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368460

RESUMEN

Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.


Asunto(s)
Encéfalo , Sustancia Negra , Humanos , RNA-Seq , Encéfalo/metabolismo , Sustancia Negra/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética
4.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873117

RESUMEN

Transcription Factors (TFs) influence gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Because genomic localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF binding sites can disrupt TF-DNA associations and affect gene regulation. To identify variants that impact TF binding in human brain tissues, we quantified allele bias for 93 TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two donors. Using graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signal between alleles at heterozygous variants within each tissue sample from each donor. Comparison of results from different brain regions within donors and the same regions between donors provided measures of allele bias reproducibility. We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at least one TF. We found that alleles that are rarer in the general population were more likely than common alleles to exhibit large biases, and more frequently led to reduced TF binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 3,309 of which were found in neural contexts. Our results provide insights into the effects of both common and rare variation on gene regulation in the brain. These findings can facilitate mechanistic understanding of cis-regulatory variation associated with biological traits, including disease.

5.
Complex Psychiatry ; 8(3-4): 90-98, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36778651

RESUMEN

Introduction: Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods: We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative p value threshold of 5E-08 was used to find the significant loci. Results: One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816-14807 and 5462-14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3' breakpoint of the two associated deletions. Conclusion: This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYB gene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3' deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.

7.
Transl Psychiatry ; 12(1): 353, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042222

RESUMEN

Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/metabolismo , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Femenino , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Esquizofrenia/metabolismo , Sinapsis/metabolismo
8.
Transl Psychiatry ; 12(1): 159, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422091

RESUMEN

Suicides have increased to over 48,000 deaths yearly in the United States. Major depressive disorder (MDD) is the most common diagnosis among suicides, and identifying those at the highest risk for suicide is a pressing challenge. The objective of this study is to identify changes in gene expression associated with suicide in brain and blood for the development of biomarkers for suicide. Blood and brain were available for 45 subjects (53 blood samples and 69 dorsolateral prefrontal cortex (DLPFC) samples in total). Samples were collected from MDD patients who died by suicide (MDD-S), MDDs who died by other means (MDD-NS) and non-psychiatric controls. We analyzed gene expression using RNA and the NanoString platform. In blood, we identified 14 genes which significantly differentiated MDD-S versus MDD-NS. The top six genes differentially expressed in blood were: PER3, MTPAP, SLC25A26, CD19, SOX9, and GAR1. Additionally, four genes showed significant changes in brain and blood between MDD-S and MDD-NS; SOX9 was decreased and PER3 was increased in MDD-S in both tissues, while CD19 and TERF1 were increased in blood but decreased in DLPFC. To our knowledge, this is the first study to analyze matched blood and brain samples in a well-defined population of MDDs demonstrating significant differences in gene expression associated with completed suicide. Our results strongly suggest that blood gene expression is highly informative to understand molecular changes in suicide. Developing a suicide biomarker signature in blood could help health care professionals to identify subjects at high risk for suicide.


Asunto(s)
Trastorno Depresivo Mayor , Suicidio , Sistemas de Transporte de Aminoácidos/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al Calcio , Trastorno Depresivo Mayor/psicología , Humanos , Corteza Prefrontal/metabolismo , Suicidio/psicología
9.
Sci Rep ; 10(1): 8626, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451470

RESUMEN

The study of postsynaptic excitation to inhibition (E/I ratio) imbalances in human brain diseases, is a highly relevant functional measurement poorly investigated due to postmortem degradation of synaptic receptors. We show that near-simultaneous recording of microtransplanted synaptic receptors after simulated morgue conditions allows the determination of the postsynaptic E/I ratio for at least 120 h after death, expanding the availability and use of human diseased tissue stored in brain banks.


Asunto(s)
Encéfalo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Adulto , Animales , Encefalopatías/patología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Humanos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ácido Kaínico/farmacología , Masculino , Oocitos/citología , Oocitos/metabolismo , Ratas , Ratas Wistar , Receptores de Neurotransmisores/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/fisiología , Temperatura , Factores de Tiempo , Ácido gamma-Aminobutírico/farmacología
10.
Commun Biol ; 2: 153, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069263

RESUMEN

Altered expression of GABA receptors (GABAARs) has been implicated in neurological and psychiatric disorders, but limited information about region-specific GABAAR subunit expression in healthy human brains, heteromeric assembly of major isoforms, and their collective organization across healthy individuals, are major roadblocks to understanding their role in non-physiological states. Here, by using microarray and RNA-Seq datasets-from single cell nuclei to global brain expression-from the Allen Institute, we find that transcriptional expression of GABAAR subunits is anatomically organized according to their neurodevelopmental origin. The data show a combination of complementary and mutually-exclusive expression patterns that delineate major isoforms, and which is highly stereotypical across brains from control donors. We summarize the region-specific signature of GABAR subunits per subject and its variability in a control population sample that can be used as a reference for remodeling changes during homeostatic rearrangements of GABAAR subunits after physiological, pharmacological or pathological challenges.


Asunto(s)
Encéfalo/metabolismo , Subunidades de Proteína/genética , Receptores de GABA-A/genética , Transcriptoma , Adulto , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/metabolismo , Encéfalo/anatomía & histología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/metabolismo , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Hipocampo/anatomía & histología , Hipocampo/metabolismo , Humanos , Hipotálamo/anatomía & histología , Hipotálamo/metabolismo , Masculino , Mesencéfalo/anatomía & histología , Mesencéfalo/metabolismo , Persona de Mediana Edad , Especificidad de Órganos , Filogenia , Subunidades de Proteína/clasificación , Subunidades de Proteína/metabolismo , Receptores de GABA-A/clasificación , Receptores de GABA-A/metabolismo
11.
Nucleic Acids Res ; 47(10): e59, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30869147

RESUMEN

Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp 'common deletion' was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns-Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.


Asunto(s)
Biología Computacional/métodos , ADN Mitocondrial/genética , Trastorno Depresivo Mayor/genética , Sitios de Empalme de ARN/genética , Análisis de Secuencia de ARN/métodos , Eliminación de Secuencia , Algoritmos , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Roturas del ADN , ADN Mitocondrial/química , Trastorno Depresivo Mayor/sangre , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa
12.
Cell Stem Cell ; 22(5): 698-712.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681516

RESUMEN

The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.


Asunto(s)
Ghrelina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Obesidad Mórbida/metabolismo , Obesidad Mórbida/patología , Índice de Masa Corporal , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Femenino , Humanos , Masculino , Obesidad Mórbida/genética , Transducción de Señal/genética
13.
Biol Psychiatry ; 83(9): 780-789, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29628042

RESUMEN

BACKGROUND: The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. METHODS: We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. RESULTS: In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. CONCLUSIONS: This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample.


Asunto(s)
Genes Mitocondriales , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Mol Neuropsychiatry ; 3(3): 157-169, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29594135

RESUMEN

Subjects with schizophrenia (SZ) and bipolar disorder (BD) show decreased protein and transcript levels for mitochondrial complex I. In vitro results suggest antipsychotic and antidepressant drugs may be responsible. We measured complex I activity in BD, SZ, and controls and presence of antipsychotic and antidepressant medications, mitochondrial DNA (mtDNA) copy number, and the mtDNA "common deletion" in the brain. Complex I activity in the prefrontal cortex was decreased by 45% in SZ compared to controls (p = 0.02), while no significant difference was found in BD. Complex I activity was significantly decreased (p = 0.01) in pooled cases (SZ and BD) that had detectable psychotropic medications and drugs compared to pooled cases with no detectable levels. Subjects with age at onset in their teens and psychotropic medications showed decreased (p < 0.05) complex I activity compared to subjects with an adult age at onset. Both SZ and BD groups displayed significant increases (p < 0.05) in mtDNA copy number compared to controls; however, common deletion burden was not altered. Complex I deficiency is found in SZ brain tissue, and psychotropic medications may play a role in mitochondrial dysfunction. Studies of medication-free first-episode psychosis patients are needed to elucidate whether mitochondrial pathophysiology occurs independent of medication effects.

15.
Neurosci Biobehav Rev ; 66: 80-91, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27108532

RESUMEN

Major depressive disorder (MDD) is a leading cause of disability worldwide characterized by altered neuronal activity in brain regions involved in the control of stress and emotion. Although multiple lines of evidence suggest that altered stress-coping mechanisms underlie the etiology of MDD, the homeostatic control of neuronal excitability in MDD at the molecular level is not well established. In this review, we examine past and current evidence implicating dysregulation of the polyamine system as a central factor in the homeostatic response to stress and the etiology of MDD. We discuss the cellular effects of abnormal metabolism of polyamines in the context of their role in sensing and modulation of neuronal, electrical, and synaptic activity. Finally, we discuss evidence supporting an allostatic model of depression based on a chronic elevation in polyamine levels resulting in self-sustained stress response mechanisms maintained by maladaptive homeostatic mechanisms.


Asunto(s)
Trastorno Depresivo Mayor , Transmisión Sináptica , Encéfalo , Humanos , Poliaminas , Suicidio
16.
Microarrays (Basel) ; 5(1)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26998349

RESUMEN

Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long-held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders.

17.
Mol Neuropsychiatry ; 1(4): 201-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26550561

RESUMEN

Genetic evidence has supported the hypothesis that schizophrenia (SZ) is a polygenic disorder caused by the disruption in function of several or many genes. The most common and reproducible cellular phenotype associated with SZ is a reduction in dendritic spines within the neocortex, suggesting alterations in dendritic architecture may cause aberrant cortical circuitry and SZ symptoms. Here, we review evidence supporting a multifactorial model of mitochondrial dysfunction in SZ etiology and discuss how these multiple paths to mitochondrial dysfunction may contribute to dendritic spine loss and/or underdevelopment in some SZ subjects. The pathophysiological role of mitochondrial dysfunction in SZ is based upon genomic analyses of both the mitochondrial genome and nuclear genes involved in mitochondrial function. Previous studies and preliminary data suggest SZ is associated with specific alleles and haplogroups of the mitochondrial genome, and also correlates with a reduction in mitochondrial copy number and an increase in synonymous and nonsynonymous substitutions of mitochondrial DNA. Mitochondrial dysfunction has also been widely implicated in SZ by genome-wide association, exome sequencing, altered gene expression, proteomics, microscopy analyses, and induced pluripotent stem cell studies. Together, these data support the hypothesis that SZ is a polygenic disorder with an enrichment of mitochondrial targets.

18.
PLoS One ; 10(5): e0127280, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26011537

RESUMEN

A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Trastornos Mentales/genética , Mutación/genética , Adulto , Estudios de Casos y Controles , Análisis Mutacional de ADN , Electroforesis en Gel de Agar , Femenino , Sitios Genéticos , Humanos , Masculino , Trastornos Mentales/sangre , Persona de Mediana Edad , Datos de Secuencia Molecular , Corteza Prefrontal/patología
19.
J Med Genet ; 51(3): 185-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24431331

RESUMEN

INTRODUCTION: Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. METHODS AND RESULTS: Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. CONCLUSIONS: We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway.


Asunto(s)
Anoftalmos/genética , Microftalmía/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Transducción de Señal/genética , Tretinoina/metabolismo , Anoftalmos/fisiopatología , Proliferación Celular , Células Cultivadas , Femenino , Fibroblastos , Humanos , Masculino , Microftalmía/fisiopatología , Mutación/genética , Linaje , Fenotipo , Sitios de Empalme de ARN/genética
20.
Schizophr Res ; 152(1): 111-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24315717

RESUMEN

The rs1344706, an intronic SNP within the zinc-finger protein 804A gene (ZNF804A), was identified as one of the most compelling risk SNPs for schizophrenia (SZ) and bipolar disorder (BD). It is however not clear by which molecular mechanisms ZNF804A increases disease risk. We evaluated the role of ZNF804A in SZ and BD by genotyping the originally associated rs1344706 SNP and an exonic SNP (rs12476147) located in exon four of ZNF804A in a sample of 422 SZ, 382 BD, and 507 controls from the isolated population of the Costa Rica Central Valley. We also investigated the rs1344706 SNP for allelic specific expression (ASE) imbalance in the dorsolateral prefrontal cortex (DLPFC) of 46 heterozygous postmortem brains. While no significant association between rs1344706 and SZ or BD was observed in the Costa Rica sample, we observed an increased risk of SZ for the minor allele (A) of the exonic rs12476147 SNP (p=0.026). Our ASE assay detected a significant over-expression of the rs12476147 A allele in DLPFC of rs1344706 heterozygous subjects. Interestingly, cDNA allele ratios were significantly different according to the intronic rs1344706 genotypes (p-value=0.03), with the rs1344706 A allele associated with increased ZNF804A rs12476147 A allele expression (average 1.06, p-value=0.02, for heterozygous subjects vs. genomic DNA). In conclusion, we have demonstrated a significant association of rs12476147 with SZ, and using a powerful within-subject design, an allelic expression imbalance of ZNF804A exonic SNP rs12476147 in the DLPFC. Although this data does not preclude the possibility of other functional variants in ZNF804A, it provides evidence that the rs1344706 SZ risk allele is the cis-regulatory variant directly responsible for this allelic expression imbalance in adult cortex.


Asunto(s)
Desequilibrio Alélico , Predisposición Genética a la Enfermedad/genética , Factores de Transcripción de Tipo Kruppel/genética , Polimorfismo de Nucleótido Simple/genética , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/patología , Trastorno Bipolar/genética , Estudios de Cohortes , Costa Rica , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Cambios Post Mortem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA