Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(12): 8481-8501, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38482067

RESUMEN

1,3-Dipolar cycloaddition is one of the important chemical reactions between a 1,3-dipole and a dipolarophile to construct a five-membered heterocyclic compound. As an available α-amino acid reactant, l-proline is extensively used in 1,3-dipolar cycloaddition reactions. A diverse spectrum of bioactive spiro and fused N-heterocycles is obtained through this synthetic approach. In this review, we have described the use of l-proline in the synthesis of various spiro- and fused heterocyclic scaffolds.

2.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368115

RESUMEN

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Asunto(s)
Quitosano , Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Quitosano/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA