Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur J Hum Genet ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394465

RESUMEN

Joubert syndrome (JS) is a genetically heterogeneous neurodevelopmental ciliopathy. Despite exome sequencing (ES), several patients remain undiagnosed. This study aims to increase the diagnostic yield by uncovering cryptic variants through targeted ES reanalysis. We first focused on 26 patients in whom ES only disclosed heterozygous pathogenic coding variants in a JS gene. We reanalyzed raw ES data searching for copy number variants (CNVs) and intronic variants affecting splicing. We validated CNVs through real-time PCR or chromosomal microarray, and splicing variants through RT-PCR or minigenes. Cryptic variants were then searched in additional 44 ES-negative JS individuals. We identified cryptic "second hits" in 14 of 26 children (54%) and biallelic cryptic variants in 3 of 44 (7%), reaching a definite diagnosis in 17 of 70 (overall diagnostic gain 24%). We show that CNVs and intronic splicing variants are a common mutational mechanism in JS; more importantly, we demonstrate that a significant proportion of such variants can be disclosed simply through a focused reanalysis of available ES data, with a significantly increase of the diagnostic yield especially among patients previously found to carry heterozygous coding variants in the KIAA0586, CC2D2A and CPLANE1 genes.

2.
Dev Med Child Neurol ; 66(3): 379-388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37593819

RESUMEN

AIM: To describe visual function in children with Joubert syndrome and to investigate its possible association with diagnostic and developmental aspects. METHOD: This retrospective cross-sectional work included 59 patients (33 male; mean age 9 years 2 months, standard deviation 6 years 3 months, range 4 months to 23 years) diagnosed with Joubert syndrome from January 2002 to December 2020. Data about clinical (neurological, neuro-ophthalmological, developmental/cognitive) and diagnostic (e.g. genetic testing, neuroimaging, systemic involvement) evaluations were collected in a data set during a review of medical records. Clinical and diagnostic variables were described in terms of raw counts and percentages. A χ2 test was conducted to investigate their association with neuropsychological skills. RESULTS: Ocular motor apraxia was highly represented in our cohort (75%), with a high prevalence of refractive defects and retinal abnormalities. Developmental delay/intellectual disability was frequent (in 69.5% of the sample), associated with retinal dystrophy (p = 0.047) and reduced visual acuity both for near (p = 0.014) and for far distances (p = 0.017). INTERPRETATION: On the basis of the relevance of oculomotor and perceptual alterations and their impact on overall and cognitive impairment, we encourage early and multidisciplinary assessment and follow-up of visual function in children with Joubert syndrome. This would help in planning a personalized rehabilitation to sustain functional vision. Further studies will be important to explore the link between biological aspects and global functioning in children with Joubert syndrome. WHAT THIS PAPER ADDS: Perceptual deficits and oculomotor impairments frequently coexist in Joubert syndrome. Retinal dysfunction may be present despite the absence of funduscopic abnormalities. Both perceptual and oculomotor impairments negatively affect cognitive development in Joubert syndrome.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Trastornos de la Motilidad Ocular , Niño , Humanos , Masculino , Lactante , Cerebelo/diagnóstico por imagen , Anomalías del Ojo/complicaciones , Enfermedades Renales Quísticas/complicaciones , Retina/diagnóstico por imagen , Trastornos de la Motilidad Ocular/genética , Estudios Retrospectivos , Estudios Transversales , Imagen por Resonancia Magnética
4.
Orphanet J Rare Dis ; 18(1): 101, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131188

RESUMEN

BACKGROUND: The term congenital ocular motor apraxia (COMA), coined by Cogan in 1952, designates the incapacity to initiate voluntary eye movements performing rapid gaze shift, so called saccades. While regarded as a nosological entity by some authors, there is growing evidence that COMA designates merely a neurological symptom with etiologic heterogeneity. In 2016, we reported an observational study in a cohort of 21 patients diagnosed as having COMA. Thorough re-evaluation of the neuroimaging features of these 21 subjects revealed a previously not recognized molar tooth sign (MTS) in 11 of them, thus leading to a diagnostic reassignment as Joubert syndrome (JBTS). Specific MRI features in two further individuals indicated a Poretti-Boltshauser syndrome (PTBHS) and a tubulinopathy. In eight patients, a more precise diagnosis was not achieved. We pursued this cohort aiming at clarification of the definite genetic basis of COMA in each patient. RESULTS: Using a candidate gene approach, molecular genetic panels or exome sequencing, we detected causative molecular genetic variants in 17 of 21 patients with COMA. In nine of those 11 subjects diagnosed with JBTS due to newly recognized MTS on neuroimaging, we found pathogenic mutations in five different genes known to be associated with JBTS, including KIAA0586, NPHP1, CC2D2A, MKS1, and TMEM67. In two individuals without MTS on MRI, pathogenic variants were detected in NPHP1 and KIAA0586, arriving at a diagnosis of JBTS type 4 and 23, respectively. Three patients carried heterozygous truncating variants in SUFU, representing the first description of a newly identified forme fruste of JBTS. The clinical diagnoses of PTBHS and tubulinopathy were confirmed by detection of causative variants in LAMA1 and TUBA1A, respectively. In one patient with normal MRI, biallelic pathogenic variants in ATM indicated variant ataxia telangiectasia. Exome sequencing failed to reveal causative genetic variants in the remaining four subjects, two of them with clear MTS on MRI. CONCLUSIONS: Our findings indicate marked etiologic heterogeneity in COMA with detection of causative mutations in 81% (17/21) in our cohort and nine different genes being affected, mostly genes associated with JBTS. We provide a diagnostic algorithm for COMA.


Asunto(s)
Enfermedades Cerebelosas , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Enfermedades Cerebelosas/genética , Cerebelo/anomalías , Anomalías del Ojo/genética , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Retina/patología
5.
Am J Med Genet A ; 191(5): 1395-1400, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36756855

RESUMEN

NFIB belongs to the nuclear factor I (NFI) family of transcription factors that, by activating or repressing gene expression during embryogenesis, has a relevant role in the development of several organs including the brain. Heterozygous pathogenic variants of NFIB have recently been associated with developmental delay and mild-to-moderate intellectual disability, macrocephaly, nonspecific facial dysmorphisms, and corpus callosum dysgenesis. We identified a heterozygous missense variant in the NFIB gene in a 15-year-old boy with neurodevelopmental disorder and brain malformations, who inherited the variant from his substantially healthy mother presenting only minor physical and neuroanatomical defects.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Niño , Humanos , Adolescente , Discapacidades del Desarrollo/genética , Factores de Transcripción NFI/genética , Encéfalo/anomalías , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Neuroimagen
6.
J Med Genet ; 60(9): 885-893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36788019

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Cerebelo/anomalías , Anomalías Múltiples/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Retina/anomalías
7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743164

RESUMEN

The inositol 1,4,5-triphosphate receptor type 1 (ITPR1) gene encodes an InsP3-gated calcium channel that modulates intracellular Ca2+ release and is particularly expressed in cerebellar Purkinje cells. Pathogenic variants in the ITPR1 gene are associated with different types of autosomal dominant spinocerebellar ataxia: SCA15 (adult onset), SCA29 (early-onset), and Gillespie syndrome. Cerebellar atrophy/hypoplasia is invariably detected, but a recognizable neuroradiological pattern has not been identified yet. With the aim of describing ITPR1-related neuroimaging findings, the brain MRI of 14 patients with ITPR1 variants (11 SCA29, 1 SCA15, and 2 Gillespie) were reviewed by expert neuroradiologists. To further evaluate the role of superior vermian and hemispheric cerebellar atrophy as a clue for the diagnosis of ITPR1-related conditions, the ITPR1 gene was sequenced in 5 patients with similar MRI pattern, detecting pathogenic variants in 4 of them. Considering the whole cohort, a distinctive neuroradiological pattern consisting in superior vermian and hemispheric cerebellar atrophy was identified in 83% patients with causative ITPR1 variants, suggesting this MRI finding could represent a hallmark for ITPR1-related disorders.


Asunto(s)
Inositol , Adulto , Atrofia , Cerebelo/anomalías , Discapacidades del Desarrollo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Malformaciones del Sistema Nervioso , Linaje , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas
8.
Am J Med Genet C Semin Med Genet ; 190(1): 72-88, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35238134

RESUMEN

Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the "molar tooth sign," and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene-phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene-phenotype correlates in JS.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Anomalías Múltiples/diagnóstico , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Cerebelo/anomalías , Proteínas del Citoesqueleto/genética , Anomalías del Ojo/patología , Femenino , Genotipo , Humanos , Enfermedades Renales Quísticas/genética , Masculino , Fenotipo , Retina/anomalías , Retina/patología
9.
Cerebellum ; 21(6): 1144-1150, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34846692

RESUMEN

Joubert syndrome (JS) is a recessively inherited ciliopathy, characterized by a specific cerebellar and brainstem malformation recognizable on brain imaging as the "molar tooth sign" (MTS). Clinical signs include hypotonia, developmental delay, breathing abnormalities, and ocular motor apraxia. Older patients develop ataxia, intellectual impairment, and variable organ involvement. JS is genetically heterogeneous, with over 40 ciliary genes overall accounting for 65-75% cases. Thus, in recent years, the genetic diagnosis of JS has been based on the analysis of next-generation sequencing targeted gene panels. Since clinical features are unspecific and undistinguishable from other neurodevelopmental syndromes, the recognition of the MTS is crucial to address the patient to the appropriate genetic testing. However, the MTS is not always properly diagnosed, resulting either in false negative diagnoses (patients with the MTS not addressed to JS genetic testing) or in false positive diagnoses (patients with a different brain malformation wrongly addressed to JS genetic testing). Here, we present six cases referred for JS genetic testing based on inappropriate recognition of MTS. While the analysis of JS-related genes was negative, whole-exome sequencing (WES) disclosed pathogenic variants in other genes causative of distinct brain malformative conditions with partial clinical and neuroradiological overlap with JS. Reassessment of brain MRIs from five patients by a panel of expert pediatric neuroradiologists blinded to the genetic diagnosis excluded the MTS in all cases but one, which raised conflicting interpretations. This study highlights that the diagnostic yield of NGS-based targeted panels is strictly related to the accuracy of the diagnostic referral based on clinical and imaging assessment and that WES has an advantage over targeted panel analysis when the diagnostic suspicion is not straightforward.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Niño , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/genética , Anomalías del Ojo/diagnóstico por imagen , Anomalías del Ojo/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/genética , Cerebelo/patología , Retina/diagnóstico por imagen , Retina/patología , Secuenciación del Exoma , Errores Diagnósticos
10.
J Med Genet ; 59(9): 888-894, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34675124

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.


Asunto(s)
Anomalías Múltiples , Ataxia Cerebelosa , Anomalías del Ojo , Discapacidad Intelectual , Enfermedades Renales Quísticas , Anomalías Múltiples/genética , Ataxia Cerebelosa/genética , Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Anomalías del Ojo/genética , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Masculino , Fenotipo , Proteínas Represoras/genética , Retina/anomalías
11.
J Med Genet ; 59(4): 399-409, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085948

RESUMEN

BACKGROUND: Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS: We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS: A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION: CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.


Asunto(s)
Enfermedades Cerebelosas , Atrofias Olivopontocerebelosas , Enfermedades Cerebelosas/genética , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Femenino , Humanos , Masculino , Mutación/genética , Proteínas Nucleares/genética , Atrofias Olivopontocerebelosas/diagnóstico , Atrofias Olivopontocerebelosas/genética , Atrofias Olivopontocerebelosas/patología , Fenotipo
12.
Neurol Genet ; 7(6): e631, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34703884

RESUMEN

BACKGROUND AND OBJECTIVES: To expand the clinical knowledge of GPAA1-related glycosylphosphatidylinositol (GPI) deficiency. METHODS: An international case series of 7 patients with biallelic GPAA1 variants were identified. Clinical, biochemical, and neuroimaging data were collected for comparison. Where possible, GPI-anchored proteins were assessed using flow cytometry. RESULTS: Ten novel variants were identified in 7 patients. Flow cytometry samples of 3 available patients confirmed deficiency of several GPI-anchored proteins on leukocytes. Extensive phenotypic information was available for each patient. The majority experienced developmental delay, seizures, and hypotonia. Neuroimaging revealed cerebellar anomalies in the majority of the patients. Alkaline phosphatase was within the normal range in 5 individuals and low in 1 individual, as has been noted in other transamidase defects. We notably describe individuals either less affected or older than the ones published previously. DISCUSSION: Clinical features of the cases reported broaden the spectrum of the known phenotype of GPAA1-related GPI deficiency, while outlining the importance of using functional studies such as flow cytometry to aid in variant classification.

13.
Adv Ther ; 38(1): 278-289, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098555

RESUMEN

INTRODUCTION: Joubert syndrome (JS) is a recessive disorder characterized by a congenital malformation of the mid-hindbrain and a large spectrum of clinical features including optic nerve morphologic abnormalities. The function of the visual pathways, including the optic nerve, can be objectively evaluated by visual evoked potential (VEP) recordings. Our work aims to employ VEP to evaluate the neural conduction along the visual pathways in JS patients with or without optic nerve morphologic abnormalities (ONMA). METHODS: In this observational and prospective study, 18 children with genetic diagnosis of JS (mean age 8.78 ± 5.87 years) and 17 healthy age-similar control subjects (control group, 9.05 ± 6.02 years) were enrolled. Based on presence/absence of ONMA at fundus examination, JS patients were divided into two groups: the JS-A group (eight patients with ONMA) and JS-N group (ten patients without ONMA). Following the ISCEV standards, pattern VEPs were recorded in patients and controls in response to 60' and 15' checks to obtain a prevalent activation of large or small axons, respectively. RESULTS: Compared to controls, both the JS-A and JS-N groups showed significant abnormalities in 60' and 15' VEP implicit time and amplitude. Only in the JS-N group were values of 15' VEP implicit significantly correlated with the corresponding values of visual acuity. CONCLUSIONS: Our results suggest that a visual pathways dysfunction (of both large and small axons) detectable by VEP may occur in JS patients regardless of the presence of ONMA. Since clinical trials are envisaged in the near future to address JS-related ocular problems, our results might provide information about the potential usefulness of VEP recordings to assess the efficacy of treatments targeted to improve the visual pathways' function.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Adolescente , Cerebelo/anomalías , Niño , Preescolar , Electrorretinografía , Potenciales Evocados Visuales , Anomalías del Ojo/diagnóstico , Humanos , Enfermedades Renales Quísticas/diagnóstico , Estudios Prospectivos , Retina/anomalías , Vías Visuales
14.
Stem Cell Res ; 49: 102007, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010677

RESUMEN

We have generated new disease-specific induced pluripotent stem cell (iPSC) lines from skin fibroblasts obtained from a female patient with Joubert syndrome (JS) caused by compound heterozygous mutations in C5orf42 gene. The generated iPSCs offer an unprecedented opportunity to obtain iPSC-derived neurons to investigate the pathogenesis of JS in vitro and to develop therapeutic strategies.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Células Madre Pluripotentes Inducidas , Enfermedades Renales Quísticas , Diferenciación Celular , Cerebelo/anomalías , Anomalías del Ojo/genética , Femenino , Humanos , Mutación , Retina/anomalías
15.
Adv Ther ; 37(9): 3827-3838, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32671685

RESUMEN

INTRODUCTION: Joubert syndrome (JS) is an autosomal recessive disorder characterized by a congenital malformation of the mid-hindbrain and a large spectrum of clinical features including congenital retinal dystrophy. The function of different retinal elements (rod, cone, bipolar cells) can be objectively evaluated by electroretinogram (ERG) recordings. Our work aims to evaluate the retinal function (by ERG recordings) in patients with JS with or without congenital retinal dystrophy. In addition, since clinical trials should be performed in the near future in JS, our results could provide information about the possible usefulness of ERG recordings in the assessment of the efficacy of treatments targeted to improve the retinal involvement. METHODS: In this observational and prospective study, 24 children with genetic identification for JS (mean age 10.75 ± 6.59 years) and 25 healthy age-similar normal control subjects (control group, mean age 10.55 ± 3.76 years) were enrolled. On the basis of the presence/absence of retinal dystrophy at fundus examination, patients with JS were divided into two groups: patients with JS with retinal dystrophy (16 children, mean age 11.00 ± 6.74 years, providing 16 eyes; JS-RD group) and patients with JS without retinal dystrophy (8 children, mean age 10.50 ± 6.45 years, providing 8 eyes; JS-NRD group). In patients with JS and controls, visual acuity (VA), dark-adapted, light-adapted, and 30-Hz flicker ERGs were performed according to International Society for Clinical Electrophysiology of Vision (ISCEV) standard protocols. RESULTS: When compared to controls, patients in the JS-RD and JS-NRD groups showed significant abnormalities of the values of dark-adapted, light-adapted, and 30-Hz flicker ERG parameters. The ERG and VA changes were not significantly correlated. CONCLUSIONS: Our results suggest that a dysfunction of photoreceptors and bipolar cells occurs in patients with JS with or without retinal dystrophy. The retinal impairment can be detected by ERG recordings and this method should be proposed to evaluate the effectiveness of adequate treatment targeted to improve the retinal impairment in patients with JS.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/fisiopatología , Cerebelo/anomalías , Electrorretinografía/métodos , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/fisiopatología , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/fisiopatología , Retina/anomalías , Retina/fisiopatología , Agudeza Visual/fisiología , Adolescente , Cerebelo/fisiopatología , Niño , Preescolar , Femenino , Voluntarios Sanos , Humanos , Italia , Masculino , Estudios Prospectivos
16.
Neurology ; 94(8): e797-e801, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31969461

RESUMEN

OBJECTIVE: To estimate the prevalence of Joubert syndrome (JS) in Italy applying standards of descriptive epidemiology and to provide a molecular characterization of the described patient cohort. METHODS: We enrolled all patients with a neuroradiologically confirmed diagnosis of JS who resided in Italy in 2018 and calculated age and sex prevalence, assuming a Poisson distribution. We also investigated the correlation between proband chronological age and age at diagnosis and performed next-generation sequencing (NGS) analysis on probands' DNA when available. RESULTS: We identified 284 patients with JS: the overall, female- and male-specific population-based prevalence rates were 0.47 (95% confidence interval [CI] 0.41-0.53), 0.41 (95% CI 0.32-0.49), and 0.53 (95% CI 0.45-0.61) per 100,000 population, respectively. When we considered only patients in the age range from 0 to 19 years, the corresponding population-based prevalence rates rose to 1.7 (95% CI 1.49-1.97), 1.62 (95% CI 1.31-1.99), and 1.80 (95% CI 1.49-2.18) per 100,000 population. NGS analysis allowed identifying the genetic cause in 131 of 219 screened probands. Age at diagnosis was available for 223 probands, with a mean of 6.67 ± 8.10 years, and showed a statistically significant linear relationship with chronological age (r 2 = 0.79; p < 0.001). CONCLUSIONS: We estimated for the first time the age and sex prevalence of JS in Italy and investigated the patients' genetic profile. The obtained population-based prevalence rate was ≈10 times higher than that available in literature for children population.


Asunto(s)
Anomalías Múltiples/epidemiología , Cerebelo/anomalías , Anomalías del Ojo/epidemiología , Enfermedades Renales Quísticas/epidemiología , Retina/anomalías , Anomalías Múltiples/genética , Adolescente , Adulto , Factores de Edad , Edad de Inicio , Niño , Preescolar , Bases de Datos Genéticas , Anomalías del Ojo/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Italia/epidemiología , Enfermedades Renales Quísticas/genética , Masculino , Persona de Mediana Edad , Prevalencia , Factores Sexuales , Adulto Joven
17.
Mol Biol Rep ; 47(1): 711-714, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31583567

RESUMEN

De novo mutations in the IRF2BPL gene have been identified to date in 18 patients presenting with neuromotor regression, epilepsy and variable neurological signs. Here, we report a female child carrying a novel heterozygous truncating variant in IRF2BPL. Following normal development for two and half years, she developed a progressive neurological condition with psychomotor regression, dystonic tetraparesis with hyperkinetic movements, but no overt epilepsy. Skin biopsy revealed enlarged lysosomes containing granular and tubular material, suggestive of a lysosomal storage disorder. This case expands the IRF2BPL phenotypic spectrum, for the first time providing evidence of endolysosomal storage.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades por Almacenamiento Lisosomal , Lisosomas/patología , Proteínas Nucleares/genética , Niño , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Humanos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Mutación/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Fenotipo , Piel/citología , Piel/patología
18.
J Cell Physiol ; 234(9): 15010-15024, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30667057

RESUMEN

Trisomy 21 causes Down syndrome (DS), the most common human genetic disorder and the leading genetic cause of intellectual disability. The alteration of one-carbon metabolism was described as the possible metabolic cause of the intellectual disability development in subjects with DS. One of the biochemical pathways involved in the one-carbon group transfer is the folate cycle. The cytotoxic drug methotrexate (MTX) is a folic acid (FA) analogue which inhibits the activity of dihydrofolate reductase enzyme involved in the one-carbon metabolic cycle. Trisomy 21 cells are more sensitive to the MTX effect than euploid cells, and in 1986 Jérôme Lejeune and Coll. demonstrated that MTX was twice as toxic in trisomy 21 lymphocytes than in control cells. In the present work, the rescue effect on MTX toxicity mediated by FA and some of its derivatives, tetrahydrofolate (THF), 5-formyl-THF, and 5-methyl-THF, in both normal and trisomy 21 skin fibroblast cells, was evaluated. A statistically significant rescue effect was obtained by 5-formyl-THF, 5-methyl-THF, and their combination, administered together with MTX. In conclusion, trisomy 21 fibroblast cell lines showed a good response to the rescue effects of 5-formyl-THF and 5-methyl-THF on the MTX toxicity almost as normal cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA