Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 11(1): 14046, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234241

RESUMEN

The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in different cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fine-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifically tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafficking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fine-tunes leukocyte physiology.


Asunto(s)
Calmodulina/metabolismo , Membrana Celular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Fenómenos Electrofisiológicos , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Leucocitos/metabolismo , Modelos Biológicos , Especificidad de Órganos/genética , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
2.
FASEB J ; 33(7): 8263-8279, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30969795

RESUMEN

The voltage-dependent potassium (Kv) channel Kv1.3 regulates leukocyte proliferation, activation, and apoptosis, and altered expression of this channel is linked to autoimmune diseases. Thus, the fine-tuning of Kv1.3 function is crucial for the immune system response. The Kv1.3 accessory protein, potassium voltage-gated channel subfamily E (KCNE) subunit 4, acts as a dominant negative regulatory subunit to both enhance inactivation and induce intracellular retention of Kv1.3. Mutations in KCNE4 also cause immune system dysfunction. Although the formation of Kv1.3-KCNE4 complexes has profound consequences for leukocyte physiology, the molecular determinants involved in the Kv1.3-KCNE4 association are unknown. We now show that KCNE4 associates with Kv1.3 via a tetraleucine motif situated within the carboxy-terminal domain of this accessory protein. This motif would function as an interaction platform, in which Kv1.3 and Ca2+/calmodulin compete for the KCNE4 interaction. Finally, we propose a structural model of the Kv1.3-KCNE4 complex. Our experimental data and the in silico structure suggest that the KCNE4 interaction hides a forward-trafficking motif within Kv1.3 in addition to adding a strong endoplasmic reticulum retention signature to the Kv1.3-KCNE4 complex. Thus, the oligomeric composition of the Kv1.3 channelosome fine-tunes the precise balance between anterograde and intracellular retention elements that control the cell surface expression of Kv1.3 and immune system physiology.-Solé, L., Roig, S. R., Sastre, D., Vallejo-Gracia, A., Serrano-Albarrás, A., Ferrer-Montiel, A., Fernández-Ballester, G., Tamkun, M. M., Felipe, A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Leucocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Canal de Potasio Kv1.3/genética , Leucocitos/citología , Ratones , Canales de Potasio con Entrada de Voltaje/genética , Ratas
3.
Biochem Pharmacol ; 165: 214-220, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878554

RESUMEN

Rheumatoid arthritis (RA) is a serious autoimmune disease that has severe impacts on both the wellbeing of patients and the economy of the health system. Similar to many autoimmune diseases, RA concurs with a long evolution, which eventually results in highly debilitating symptoms. Therapeutic treatments last for long periods during RA. However, their efficiency and side effects result in suboptimal conditions. Therefore, the need for specific, safer and nontoxic alternatives for the treatment of RA is essential. Kv1.3 is a voltage-gated potassium channel that has a crucial role in immune system response. The proliferation and activation of leukocytes are linked to differential expressions of this channel. The evidence is particularly relevant in the aggressive T effector memory (TEM) cells, which are the main actors in the development of autoimmune diseases. Blockage of Kv1.3 inhibits the reactivity of these cells. Furthermore, pharmacological inhibition of Kv1.3 ameliorates symptoms in animal models of autoimmune diseases, such as experimental autoimmune encephalomyelitis or induced psoriasis with no side effects. Kv1.3 is sensitive to several animal toxins and plant compounds, and several research groups have searched for new Kv1.3 blockers by improving these natural molecules. The research is mainly focused on enhancing the selectivity of the blockers, thereby reducing the potential for side effects on other related channel subunits. Higher selectivity means that treatments will potentially be less harmful. This leads to a lower discontinuation rate of the therapy than the current first-line treatment for RA. The molecular backgrounds of many autoimmune diseases implicate leukocyte Kv1.3 and suggests that a new medication for RA is feasible. Therapies could also be later repurposed to treat other immune system disorders.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Animales , Artritis Reumatoide/inmunología , Humanos , Canal de Potasio Kv1.3/fisiología , Linfocitos T/inmunología
5.
J Cell Sci ; 129(22): 4265-4277, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802162

RESUMEN

The voltage-dependent K+ channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K+ currents because the channel is retained within intracellular compartments. Thus, KCNE subunits are regulators of K+ channels in the immune system. Although the canonical interactions of KCNE subunits with Kv7 channels are under intensive investigation, the molecular determinants governing the important Kv1.3- KCNE4 association in the immune system are unknown. Our results suggest that the tertiary structure of the C-terminal domain of Kv1.3 is necessary and sufficient for such an interaction. However, this element is apparently not involved in modulating Kv1.3 gating. Furthermore, the KCNE4-dependent intracellular retention of the channel, which negatively affects the activity of Kv1.3, is mediated by two independent and additive mechanisms. First, KCNE4 masks the YMVIEE signature at the C-terminus of Kv1.3, which is crucial for the surface targeting of the channel. Second, we identify a potent endoplasmic reticulum retention motif in KCNE4 that further limits cell surface expression. Our results define specific molecular determinants that play crucial roles in the physiological function of Kv1.3 in leukocytes.


Asunto(s)
Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Células Jurkat , Leucocitos , Ratones , Canales de Potasio con Entrada de Voltaje/química , Unión Proteica , Dominios Proteicos , Ratas
6.
Biochim Biophys Acta ; 1848(10 Pt B): 2477-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25517985

RESUMEN

Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Potenciales de la Membrana/efectos de los fármacos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/prevención & control , Fenotipo , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética
7.
Front Physiol ; 4: 283, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24133455

RESUMEN

Voltage-dependent K(+) channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.

8.
J Cell Sci ; 126(Pt 24): 5681-91, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24144698

RESUMEN

Impairment of Kv1.3 expression at the cell membrane in leukocytes and sensory neuron contributes to the pathophysiology of autoimmune diseases and sensory syndromes. Molecular mechanisms underlying Kv1.3 channel trafficking to the plasma membrane remain elusive. We report a novel non-canonical di-acidic signal (E483/484) at the C-terminus of Kv1.3 essential for anterograde transport and surface expression. Notably, homologous motifs are conserved in neuronal Kv1 and Shaker channels. Biochemical analysis revealed interactions with the Sec24 subunit of the coat protein complex II. Disruption of this complex retains the channel at the endoplasmic reticulum. A molecular model of the Kv1.3-Sec24a complex suggests salt-bridges between the di-acidic E483/484 motif in Kv1.3 and the di-basic R750/752 sequence in Sec24. These findings identify a previously unrecognized motif of Kv channels essential for their expression on the cell surface. Our results contribute to our understanding of how Kv1 channels target to the cell membrane, and provide new therapeutic strategies for the treatment of pathological conditions.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Membrana Celular/metabolismo , Proteína Coatómero/metabolismo , Células HEK293 , Humanos , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Señales de Clasificación de Proteína , Transporte de Proteínas , Ratas , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
9.
Channels (Austin) ; 7(2): 85-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23327879

RESUMEN

Voltage-dependent K (+) (Kv) channels are tightly regulated during the immune system response. Leukocytes have a limited repertoire of Kv channels, whose physiological role is under intense investigation. A functional Kv channel is an oligomeric complex composed of pore-forming and ancillary subunits. The KCNE gene family is a novel group of modulatory Kv channel elements in leukocytes. Here, we characterized the gene expression of KCNEs (1-5) in leukocytes and investigated their regulation during leukocyte proliferation and mode of activation. Murine bone-marrow-derived macrophages, human Jurkat T-lymphocytes and human Raji B-cells were analyzed. KCNEs (1-5) are expressed in all leukocytes lineages. Most KCNE mRNAs show cell cycle-dependent regulation and are differentially regulated under specific insults. Our results further suggest a new and yet undefined physiological role for KCNE subunits in the immune system. Putative associations of these ancillary proteins with Kv channels would yield a wide variety of biophysically and pharmacologically distinct channels that fine-tune the immunological response.


Asunto(s)
Proliferación Celular , Leucocitos/metabolismo , Activación de Linfocitos , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Humanos , Leucocitos/inmunología , Leucocitos/fisiología , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/inmunología , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Subunidades de Proteína/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA