Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Neurophysiol ; 124(6): 1605-1614, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966754

RESUMEN

The vestibular system is modulated by various neuromodulators including opioid peptides. The current study was conducted to determine whether activation of nociceptin/orphanin FQ peptide (NOP) receptors modulates voltage-gated calcium currents and action potential discharge of rat vestibular afferent neurons. We performed whole cell patch-clamp recordings on cultured vestibular afferent neurons from P7-P10 Long-Evans rats. Application of nociceptin/orphanin FQ (N/OFQ), a 17-amino acid neuropeptide that is the endogenous ligand for NOP receptor, inhibits the high-voltage activated (HVA) component of the calcium current in a concentration-dependent manner with a half inhibitory concentration of 26 nM. Said inhibitory action on the calcium current is voltage-dependent, which was made clear by the fact that it was reverted in 80% by a depolarizing prepulse. Furthermore, the effect of N/OFQ was blocked by application of the specific NOP-antagonist UFP101, by preincubation with G-protein blocker pertussis toxin, and by coapplication of the specific N-type calcium-current blocker ω-conotoxin-MVIIA. N/OFQ application causes an increase in the duration and maximum rate of repolarization of action potentials. It also decreases repetitive discharge and discharge elicited by sinusoidal stimulation. These results show that in vestibular afferents, NOP receptor activation inhibits N-type calcium current by activating G proteins, mostly through the Gßγ subunit. This suggests that NOP activation produces a presynaptic modulation of primary vestibular afferent neurons' output into the vestibular nuclei, thus taking part in the integration and gain setting of vestibular information in second-order vestibular nucleus neurons.NEW & NOTEWORTHY Our results show that in primary vestibular afferent neurons, activation of the nociceptin/orphanin FQ peptide receptor inhibits the N-type calcium current by a mechanism mediated by G proteins. We propose that calcium current inhibition modulates neurotransmitter release from vestibular afferents, producing a presynaptic modulation of vestibular input to vestibular nuclei, thus contributing to gain control in the vestibular afferent input.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Neuronas/fisiología , Péptidos Opioides/fisiología , Receptores Opioides/fisiología , Vestíbulo del Laberinto/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Potenciales de la Membrana , Neuronas Aferentes/fisiología , Ratas Long-Evans , Receptor de Nociceptina , Nociceptina
2.
Front Cell Neurosci ; 8: 90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24734002

RESUMEN

Opioid receptors are expressed in the vestibular endorgans (afferent neurons and hair cells) and are activated by the efferent system, which modulates the discharge of action potentials in vestibular afferent neurons (VANs). In mammals, VANs mainly express the µ opioid-receptor, but the function of this receptors activation and the cellular mechanisms by which they exert their actions in these neurons are poorly studied. To determine the actions of µ opioid receptor (MOR) and cell signaling mechanisms in VANs, we made perforated patch-clamp recordings of VANs that were obtained from postnatal days 7 to 10 (P7-10) rats and then maintained in primary culture. The MOR agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) inhibited the total voltage-gated outward current; this effect was prevented by the perfusion of a Ca(2+)-free extracellular solution. We then studied the voltage-gated calcium current (Ica) and found that DAMGO Met-enkephalin or endomorphin-1 inhibited the ICa in a dose-response fashion. The effects of DAMGO were prevented by the MOR antagonist (CTAP) or by pertussis toxin (PTX). The use of specific calcium channel blockers showed that MOR activation inhibited T-, L- and N-type ICa. The use of various enzyme activators and inhibitors and of cAMP analogs allowed us to demonstrate that the MOR acts through a cAMP dependent signaling mechanism. In current clamp experiments, MOR activation increased the duration and decreased the amplitude of the action potentials and modulated the discharge produced by current injection. Pre-incubation with PTX occluded MOR activation effect. We conclude that MOR activation inhibits the T-, L- and N-type ICa through activation of a Gαi/o protein that involves a decrease in AC-cAMP-PKA activity. The modulation of ICa may have an impact on the synaptic integration, excitability, and neurotransmitter release from VANs.

3.
J Vestib Res ; 23(3): 119-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24177345

RESUMEN

This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Clinicians are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and of drug action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulators dynamics and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. The critical analysis of the literature reveals that there is a significant lack of information defining the real utility of diverse drugs used in clinical practice. The development of basic studies addressing drug actions at the molecular, cellular and systems level, combined with reliable and well controlled clinical trials, would provide the scientific basis for new strategies for the treatment of vestibular disorders.


Asunto(s)
Enfermedades Vestibulares/terapia , Animales , Monoaminas Biogénicas/fisiología , Canales de Calcio/efectos de los fármacos , Colinérgicos/farmacología , Células Ciliadas Auditivas/fisiología , Humanos , Moduladores del Transporte de Membrana/farmacología , Neuronas/fisiología , Neuropéptidos/fisiología , Neurotransmisores/farmacología , Péptidos Opioides/fisiología , Canales de Potasio/efectos de los fármacos , Receptores de Glutamato/efectos de los fármacos , Receptores Histamínicos/fisiología , Canales de Sodio/efectos de los fármacos , Enfermedades Vestibulares/tratamiento farmacológico , Vestíbulo del Laberinto/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA