Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724464

RESUMEN

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Asunto(s)
Glioblastoma , Subfamilia K de Receptores Similares a Lectina de Células NK , Células Madre Neoplásicas , Viroterapia Oncolítica , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Glioblastoma/terapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/efectos de los fármacos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Viroterapia Oncolítica/métodos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Sci Rep ; 13(1): 21670, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066084

RESUMEN

Efficient manufacture of recombinant adeno-associated virus (rAAV) vectors for gene therapy remains challenging. Packaging cell lines containing stable integration of the AAV rep/cap genes have been explored, however rAAV production needs to be induced using wild-type adenoviruses to promote episomal amplification of the integrated rep/cap genes by mobilizing a cis-acting replication element (CARE). The adenovirus proteins responsible are not fully defined, and using adenovirus during rAAV manufacture leads to contamination of the rAAV preparation. 'TESSA' is a helper adenovirus with a self-repressing Major Late Promoter (MLP). Its helper functions enable efficient rAAV manufacture when the rep and cap genes are provided in trans but is unable to support rAAV production from stable packaging cells. Using rAAV-packaging cell line HeLaRC32, we show that expression of the adenovirus L4 22/33K unit is essential for rep/cap amplification but the proteins are titrated away by binding to replicating adenovirus genomes. siRNA-knockdown of the adenovirus DNA polymerase or the use of a thermosensitive TESSA mutant decreased adenovirus genome replication whilst maintaining MLP repression, thereby recovering rep/cap amplification and efficient rAAV manufacture. Our findings have direct implications for engineering more efficient adenovirus helpers and superior rAAV packaging/producer cells.


Asunto(s)
Adenoviridae , Proteínas Virales , Humanos , Transfección , Células HeLa , Plásmidos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos/genética , Replicación Viral/genética
3.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37541690

RESUMEN

Oncolytic viruses (OVs) provide the promise of tumor-selective cytotoxicity coupled with amplification of the therapeutic agent (the virus) in situ within the tumor improving its therapeutic index. Despite this promise, however, single agent-treatments have not been as successful as combination therapies, particularly combining with checkpoint inhibitor antibodies. The antibodies may be delivered by two approaches, either encoded within the OV genome to restrict antibody production to sites of active virus infection or alternatively given alongside OVs as separate treatments. Both approaches have shown promising therapeutic outcomes, and this leads to an interesting question of whether one approach is potentially better than the other. In this review, we provide a brief summary of the combination OV-antibody therapies that target tumor cells, tumor microenvironment and immune cells to help define key parameters influencing which approach is superior, thereby improving insight into the rational design of OV treatment strategies.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Virus Oncolíticos/genética , Neoplasias/patología , Inmunoterapia , Anticuerpos , Microambiente Tumoral
4.
Nat Commun ; 13(1): 1182, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256603

RESUMEN

Recombinant adeno-associated virus (rAAV) shows great promise for gene therapy, however scalability, yield and quality remain significant issues. Here we describe an rAAV manufacturing strategy using a 'helper' adenovirus that self-inhibits its major late promoter (MLP) to truncate its own replication. Inserting a tetracycline repressor (TetR) binding site into the MLP and encoding the TetR under its transcriptional control allowed normal adenovirus replication in the presence of doxycycline but only genome amplification and early gene expression (the 'helper' functions) in its absence. Using this self-inhibiting adenovirus we demonstrate delivery of adenoviral helper functions, AAV rep and cap genes, and the rAAV genome to yield up to 30-fold more rAAV vectors compared to the helper-free plasmid approach and significant improvements in particle infectivity for a range of serotypes. This system allows significant improvements in the production of serotypes rAAV2, rAAV6, rAAV8 and rAAV9, and enables propagation of existing rAAV without transfection, a process that improves batch quality by depleting reverse packaged DNA contaminants. We propose this as a high-yielding, contaminant-free system suitable for scalable rAAV manufacture.


Asunto(s)
Adenoviridae , Dependovirus , Adenoviridae/genética , Dependovirus/genética , Vectores Genéticos/genética , Transfección , Replicación Viral
5.
J Immunother Cancer ; 9(4)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33820820

RESUMEN

BACKGROUND: Programmed death-ligand 1 (PD-L1) is an important immune checkpoint protein that can be regarded as a pan-cancer antigen expressed by multiple different cell types within the tumor. While antagonizing PD-L1 is well known to relieve PD-1/PD-L1-mediated T cell suppression, here we have combined this approach with an immunotherapy strategy to target T cell cytotoxicity directly toward PD-L1-expressing cells. We developed a bi-specific T cell engager (BiTE) crosslinking PD-L1 and CD3ε and demonstrated targeted cytotoxicity using a clinically relevant patient-derived ascites model. This approach represents an immunological 'volte-face' whereby a tumor immunological defense mechanism can be instantly transformed into an Achilles' heel for targeted immunotherapy. METHODS: The PD-L1 targeting BiTE comprises an anti-PD-L1 single-chain variable fragment (scFv) or nanobody (NB) domain and an anti-CD3 scFv domain in a tandem repeat. The ability to activate T cell cytotoxicity toward PD-L1-expressing cells was established using human carcinoma cells and PD-L1-expressing human ('M2') macrophages in the presence of autologous T cells. Furthermore, we armed oncolytic herpes simplex virus-1 (oHSV-1) with PD-L1 BiTE and demonstrated successful delivery and targeted cytotoxicity in unpurified cultures of malignant ascites derived from different cancer patients. RESULTS: PD-L1 BiTE crosslinks PD-L1-positive cells and CD3ε on T cells in a 'pseudo-synapse' and triggers T cell activation and release of proinflammatory cytokines such as interferon-gamma (IFN-γ), interferon gamma-induced protein 10 (IP-10) and tumour necrosis factor-α (TNF-α). Activation of endogenous T cells within ascites samples led to significant lysis of tumor cells and M2-like macrophages (CD11b+CD64+ and CD206+/CD163+). The survival of CD3+ T cells (which can also express PD-L1) was unaffected. Intriguingly, ascites fluid that appeared particularly immunosuppressive led to higher expression of PD-L1 on tumor cells, resulting in improved BiTE-mediated T cell activation. CONCLUSIONS: The study reveals that PD-L1 BiTE is an effective immunotherapeutic approach to kill PD-L1-positive tumor cells and macrophages while leaving T cells unharmed. This approach activates endogenous T cells within malignant ascites, generates a proinflammatory response and eliminates cells promoting tumor progression. Using an oncolytic virus for local expression of PD-L1 BiTE also prevents 'on-target off-tumor' systemic toxicities and harnesses immunosuppressive protumor conditions to augment immunotherapy in immunologically 'cold' clinical cancers.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígeno B7-H1/inmunología , Complejo CD3/inmunología , Herpesvirus Humano 1/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/metabolismo , Antígeno B7-H1/metabolismo , Complejo CD3/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Técnicas de Cocultivo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/virología , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Células Vero
6.
Mol Ther ; 29(5): 1668-1682, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33845199

RESUMEN

Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.


Asunto(s)
Terapia Genética/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Humanos , Mutación , Neoplasias/genética , Microambiente Tumoral
7.
Genes Dev ; 35(9-10): 602-618, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888558

RESUMEN

The DNA damage response (DDR) fulfils essential roles to preserve genome integrity. Targeting the DDR in tumors has had remarkable success over the last decade, exemplified by the licensing of PARP inhibitors for cancer therapy. Recent studies suggest that the application of DDR inhibitors impacts on cellular innate and adaptive immune responses, wherein key DNA repair factors have roles in limiting chronic inflammatory signaling. Antitumor immunity plays an emerging part in cancer therapy, and extensive efforts have led to the development of immune checkpoint inhibitors overcoming immune suppressive signals in tumors. Here, we review the current understanding of the molecular mechanisms underlying DNA damage-triggered immune responses, including cytosolic DNA sensing via the cGAS/STING pathway. We highlight the implications of DDR components for therapeutic outcomes of immune checkpoint inhibitors or their use as biomarkers. Finally, we discuss the rationale for novel combinations of DDR inhibitors with antagonists of immune checkpoints and current hindrances limiting their broader therapeutic applications.


Asunto(s)
Reparación del ADN/fisiología , Inmunidad Celular/genética , Inmunoterapia , Neoplasias/terapia , Inmunidad Adaptativa/genética , Daño del ADN/inmunología , Receptores con Dominio Discoidina/antagonistas & inhibidores , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
Br J Cancer ; 124(11): 1759-1776, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33782566

RESUMEN

Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T/trasplante , Animales , Humanos , Tolerancia Inmunológica/genética , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias , Linfocitos Infiltrantes de Tumor/fisiología , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/fisiología
9.
Cancers (Basel) ; 13(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578735

RESUMEN

Dysregulation of HLA (human leukocyte antigen) function is increasingly recognized as a common escape mechanism for cancers subject to the pressures exerted by immunosurveillance or immunotherapeutic interventions. Oncolytic viruses have the potential to counter this resistance by upregulating HLA expression or encouraging an HLA-independent immunological responses. However, to achieve the best therapeutic outcomes, a prospective understanding of the HLA phenotype of cancer patients is required to match them to the characteristics of different oncolytic strategies. Here, we consider the spectrum of immune competence observed in clinical disease and discuss how it can be best addressed using this novel and powerful treatment approach.

10.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352921

RESUMEN

The natural killer group 2 member D (NKG2D) receptor and its family of NKG2D ligands (NKG2DLs) are key components in the innate immune system, triggering NK, γδ and CD8+ T cell-mediated immune responses. While surface NKG2DL are rarely found on healthy cells, expression is significantly increased in response to various types of cellular stress, viral infection, and tumour cell transformation. In order to evade immune-mediated cytotoxicity, both pathogenic viruses and cancer cells have evolved various mechanisms of subverting immune defences and preventing NKG2DL expression. Comparisons of the mechanisms employed following virus infection or malignant transformation reveal a pattern of converging evolution at many of the key regulatory steps involved in NKG2DL expression and subsequent immune responses. Exploring ways to target these shared steps in virus- and cancer-mediated immune evasion may provide new mechanistic insights and therapeutic opportunities, for example, using oncolytic virotherapy to re-engage the innate immune system towards cancer cells.

11.
Eur J Pharm Sci ; 152: 105456, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32653563

RESUMEN

Vaccines are arguably the most important medical technology developed to date. However, effective treatment of diseases such as breast cancer have so far evaded standard vaccination strategies. One popular target for cancer treatment is the cell surface membrane protein, ErbB-2, also known as Her-2 or neu. It is localised to the cell surface and has raised expression in 15-30% of all breast cancers, as well as in ovarian, colon and lung cancer. Here, a liposomal system comprised of spatially separated ErbB-2 peptide, to activate B cells, and ovalbumin peptide OVA323-339, to provide non-cognate T cell support, was used to generate antibodies against the epitope of the ErbB-2 protein targeted by Pertuzumab, a monoclonal antibody licensed for the treatment of ErbB-2 expressing cancers. After just 7 days a raised (7.3-fold, p<0.01), isotype-switched, humoral immune response specific for the ErbB-2 peptide was achieved in mice with pre-existing immunity to OVA which were exposed to liposomes with external ErbB-2 and internal OVA323-339. The absence of pre-existing OVA immunity in the mice or OVA323-339 peptide in the liposomes removed the effect. The effect of this anti-ErbB-2 antibody response was characterised against an ErbB-2 overexpressing tumour cell line both in vitro and in vivo. Notably, antibody responses were demonstrated to induce cell death in vitro, resulting in 96% reduction in viable cells. This study, therefore, demonstrates the feasibility of this approach to generate a rapid, high-titre, isotype-switched, antibody response that specifically targets ErbB-2 overexpression on tumour cells and is capable of inducing cell death in vitro in the absence of complement or immune cells.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Animales , Anticuerpos Monoclonales , Formación de Anticuerpos , Línea Celular Tumoral , Liposomas , Ratones , Neoplasias/tratamiento farmacológico , Receptor ErbB-2
12.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932728

RESUMEN

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Melanoma Experimental/inmunología , Ratones , Nanopartículas , Medicina de Precisión , Primates , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , Vacunación , Vacunas Conjugadas
13.
Pharmaceutics ; 11(5)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058802

RESUMEN

A special symposium of the Academy of Pharmaceutical Sciences Nanomedicines Focus Group reviewed the current status of the use of nanomedicines for the delivery of biologics drugs. This meeting was particularly timely with the recent approval of the first siRNA-containing product Onpattro™ (patisiran), which is formulated as a lipid nanoparticle for intravenous infusion, and the increasing interest in the use of nanomedicines for the oral delivery of biologics. The challenges in delivering such molecules were discussed with specific emphasis on the delivery both across and into cells. The latest developments in Molecular Envelope Technology® (Nanomerics Ltd, London, UK), liposomal drug delivery (both from an academic and industrial perspective), opportunities offered by the endocytic pathway, delivery using genetically engineered viral vectors (PsiOxus Technologies Ltd, Abingdon, UK), Transint™ technology (Applied Molecular Transport Inc., South San Francisco, CA, USA), which has the potential to deliver a wide range of macromolecules, and AstraZeneca's initiatives in mRNA delivery were covered with a focus on their uses in difficult to treat diseases, including cancers. Preclinical data were presented for each of the technologies and where sufficiently advanced, plans for clinical studies as well as early clinical data. The meeting covered the work in progress in this exciting area and highlighted some key technologies to look out for in the future.

14.
Bioconjug Chem ; 30(4): 1244-1257, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30874432

RESUMEN

Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.


Asunto(s)
Adenoviridae/inmunología , Anticuerpos Neutralizantes/inmunología , Compuestos de Diazonio/farmacología , Viroterapia Oncolítica , Polímeros/farmacología , Línea Celular Tumoral , Compuestos de Diazonio/química , Vectores Genéticos , Humanos , Polímeros/química , Transfección
15.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30608149

RESUMEN

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Asunto(s)
Adyuvantes Inmunológicos/química , Linfocitos T CD8-positivos/efectos de los fármacos , Activación de Linfocitos , Micelas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Hidrodinámica , Ratones , Ratones Endogámicos C57BL , Unión Proteica
16.
Cancer Res ; 79(2): 331-345, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487139

RESUMEN

Tumor cells exhibiting the Warburg effect rely on aerobic glycolysis for ATP production and have a notable addiction to anaplerotic use of glutamine for macromolecular synthesis. This strategy maximizes cellular biosynthetic potential while avoiding excessive depletion of NAD+ and provides an attractive anabolic environment for viral infection. Here, we evaluate infection of highly permissive and poorly permissive cancer cells with wild-type adenoviruses and the oncolytic chimeric adenovirus enadenotucirev (EnAd). All adenoviruses caused an increase in glucose and glutamine uptake along with increased lactic acid secretion. Counterintuitively, restricting glycolysis using 2-deoxyglucose or by limiting glucose supply strongly improved virus activity in both cell types. Antagonism of glycolysis also boosted EnAd replication and transgene expression within human tumor biopsies and in xenografted tumors in vivo. In contrast, the virus life cycle was critically dependent on exogenous glutamine. Virus activity in glutamine-free cells was rescued with exogenous membrane-permeable α-ketoglutarate, but not pyruvate or oxaloacetate, suggesting an important role for reductive carboxylation in glutamine usage, perhaps for production of biosynthetic intermediates. This overlap between the metabolic phenotypes of adenovirus infection and transformed tumor cells may provide insight into how oncolytic adenoviruses exploit metabolic transformation to augment their selectivity for cancer cells. SIGNIFICANCE: This study describes changes in glucose and glutamine metabolism induced by oncolytic and wild-type adenoviruses in cancer cells, which will be important to consider in the preclinical evaluation of oncolytic viruses.


Asunto(s)
Adenoviridae/fisiología , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/virología , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/virología , Virus Oncolíticos/fisiología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/virología , Células A549 , Adenoviridae/genética , Animales , Línea Celular Tumoral , Femenino , Genoma Viral , Glucólisis , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Virus Oncolíticos/genética , Fosforilación Oxidativa , Distribución Aleatoria , Replicación Viral
17.
J Tissue Eng Regen Med ; 13(3): 369-384, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30550638

RESUMEN

Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Técnicas de Cultivo de Célula/métodos , Channelrhodopsins/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Optogenética , Regiones Promotoras Genéticas/genética , Sinapsinas/genética , Alginatos/farmacología , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reología , Sinapsinas/metabolismo
18.
Cancer Res ; 78(24): 6852-6865, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30449733

RESUMEN

: Effective immunotherapy of stromal-rich tumors requires simultaneous targeting of cancer cells and immunosuppressive elements of the microenvironment. Here, we modified the oncolytic group B adenovirus enadenotucirev to express a stroma-targeted bispecific T-cell engager (BiTE). This BiTE bound fibroblast activation protein on cancer-associated fibroblasts (CAF) and CD3ε on T cells, leading to potent T-cell activation and fibroblast death. Treatment of fresh clinical biopsies, including malignant ascites and solid prostate cancer tissue, with FAP-BiTE-encoding virus induced activation of tumor-infiltrating PD1+ T cells to kill CAFs. In ascites, this led to depletion of CAF-associated immunosuppressive factors, upregulation of proinflammatory cytokines, and increased gene expression of markers of antigen presentation, T-cell function, and trafficking. M2-like ascites macrophages exhibited a proinflammatory repolarization, indicating spectrum-wide alteration of the tumor microenvironment. With this approach, we have actively killed both cancer cells and tumor fibroblasts, reversing CAF-mediated immunosuppression and yielding a potent single-agent therapeutic that is ready for clinical assessment. SIGNIFICANCE: An engineered oncolytic adenovirus that encodes a bispecific antibody combines direct virolysis with endogenous T-cell activation to attack stromal fibroblasts, providing a multimodal treatment strategy within a single therapeutic agent.


Asunto(s)
Adenoviridae/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Virus Oncolíticos/inmunología , Linfocitos T/inmunología , Biopsia , Complejo CD3/metabolismo , Técnicas de Cocultivo , Terapia Combinada , Citocinas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Terapia de Inmunosupresión , Inflamación , Leucocitos Mononucleares/citología , Activación de Linfocitos , Neoplasias/terapia
19.
Macromol Biosci ; 18(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28902983

RESUMEN

Oncolytic viruses (OVs) are novel anticancer agents that combine direct cancer cell killing with the stimulation of antitumor immunity. In addition, OVs can be engineered to deliver biological therapeutics directly to tumors, offering unique opportunities to design multimodal anticancer strategies. Here, a case for arming OVs with bispecific T cell engagers (BiTEs) is put forward. BiTEs redirect the cytotoxicity of polyclonal T cells to target cells of choice, and have demonstrated efficacy against a number of hematological cancers. However, the success of BiTEs in the treatment of solid tumors appears more limited, at least in part due to: (i) poor delivery kinetics and penetration into tumors, and (ii) on-target off-tumor activity, leading to dose-limiting toxicities. Linking the production of BiTEs to OV replication provides an exciting means to restrict production to the tumor site, widen their therapeutic window, and synergize with direct oncolysis. This review summarizes progress thus far in the preclinical development of BiTE-armed OVs, and explores the possibility of cotargeting cancer cells and nontransformed stromal cells.


Asunto(s)
Inmunoterapia/tendencias , Neoplasias/terapia , Viroterapia Oncolítica/tendencias , Virus Oncolíticos/genética , Humanos , Neoplasias/inmunología , Neoplasias/virología , Linfocitos T/inmunología , Linfocitos T/virología
20.
Front Oncol ; 7: 153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791251

RESUMEN

Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA