Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Mol Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956870

RESUMEN

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

2.
Biophys J ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38877702

RESUMEN

Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.

3.
Nat Biomed Eng ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769158

RESUMEN

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

4.
Mol Syst Biol ; 20(4): 374-402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459198

RESUMEN

Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Estrógenos , Hígado Graso/genética , Hígado Graso/metabolismo , Expresión Génica , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Factores de Transcripción de Dominio TEA
5.
J Phys Chem B ; 128(9): 2154-2167, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38415644

RESUMEN

The structural diversity of different lipid species within the membrane defines its biophysical properties such as membrane fluidity, phase transition, curvature, charge distribution, and tension. Environment-sensitive probes, which change their spectral properties in response to their surrounding milieu, have greatly contributed to our understanding of such biophysical properties. To realize the full potential of these probes and avoid misinterpretation of their spectral responses, a detailed investigation of their fluorescence characteristics in different environments is necessary. Here, we examined the fluorescence lifetime of two newly developed membrane order probes, NR12S and NR12A, in response to alterations in their environments such as the degree of lipid saturation, cholesterol content, double bond position and configuration, and phospholipid headgroup. As a comparison, we investigated the lifetime sensitivity of the membrane tension probe Flipper in these environments. Applying fluorescence lifetime imaging microscopy (FLIM) in both model membranes and biological membranes, all probes distinguished membrane phases by lifetime but exhibited different lifetime sensitivities to varying membrane biophysical properties (e.g., cholesterol). While the lifetime of Flipper is particularly sensitive to the membrane cholesterol content, the NR12S and NR12A lifetimes are moderately sensitive to both the cholesterol content and lipid acyl chains. Moreover, all of the probes exhibit longer lifetimes at longer emission wavelengths in membranes of any complexity. This emission wavelength dependency results in varying lifetime resolutions at different spectral regions, which are highly relevant for FLIM data acquisition. Our data provide valuable insights on how to perform FLIM with these probes and highlight both their potential and limitations.


Asunto(s)
Colorantes Fluorescentes , Fluidez de la Membrana , Colorantes Fluorescentes/química , Membrana Celular/química , Fosfolípidos , Colesterol/análisis , Espectrometría de Fluorescencia/métodos
6.
Nat Commun ; 15(1): 541, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225245

RESUMEN

Efferocytic clearance of apoptotic cells in general, and T cells in particular, is required for tissue and immune homeostasis. Transmembrane mucins are extended glycoproteins highly expressed in the cell glycocalyx that function as a barrier to phagocytosis. Whether and how mucins may be regulated during cell death to facilitate efferocytic corpse clearance is not well understood. Here we show that normal and transformed human T cells express a subset of mucins which are rapidly and selectively removed from the cell surface during apoptosis. This process is mediated by the ADAM10 sheddase, the activity of which is associated with XKR8-catalyzed flipping of phosphatidylserine to the outer leaflet of the plasma membrane. Mucin clearance enhances uptake of apoptotic T cells by macrophages, confirming mucins as an enzymatically-modulatable barrier to efferocytosis. Together these findings demonstrate a glycocalyx regulatory pathway with implications for therapeutic intervention in the clearance of normal and transformed apoptotic T cells.


Asunto(s)
Eferocitosis , Mucinas , Humanos , Linfocitos T/metabolismo , Apoptosis , Fagocitosis , Proteína ADAM10/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide
7.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237683

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Asunto(s)
Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bovinos , Pavos
8.
Nat Biotechnol ; 42(4): 587-590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37308687

RESUMEN

We introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5-200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.


Asunto(s)
Liposomas , Nanopartículas , Tamaño de la Partícula , Liposomas/química , Nanopartículas/química
9.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38045315

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.

10.
ACS Appl Bio Mater ; 6(12): 5746-5758, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38048163

RESUMEN

Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to "tag" cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful "tagging" of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types.


Asunto(s)
Microburbujas , Fosfolípidos , Ultrasonografía , Membrana Celular/metabolismo , Transferrinas/metabolismo
12.
Res Sq ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503185

RESUMEN

Naltrexone (NTX), a homologue of the opiate antidote naloxone, is an orally active long-acting mu-opioid receptor (MOP) antagonist used in the treatment of opiate dependence. NTX is also found to relieve craving for alcohol and is one of the few FDA-approved drugs for alcohol use disorder (AUD). Reports that NTX blocks the actions of endogenous opioids released by alcohol are not convincing, suggesting that NTX interferes with alcohol actions by affecting opioid receptors. MOP and kappa-opioid receptor (KOP) are structurally related but functionally different. MOP is mainly located in interneurons activated by enkephalins while KOP is located in longer projections activated by dynorphins. While the actions of NTX on MOP are well established, the interaction with KOP and addiction is not well understood. We used sensitive fluorescence-based methods to study the influence of alcohol on KOP and the interaction between KOP and NTX. Here we report that alcohol interacts with KOP and its environment in the plasma membrane. These interactions are affected by NTX and are exerted both on KOP directly and on the plasma membrane (lipid) structures ("off-target"). The actions of NTX are stereospecific. Selective KOP antagonists, recently in early clinical trials for major depressive disorder, block the receptor but do not show the full action profile of NTX. The therapeutic effect of NTX treatment in AUD may be due to direct actions on KOP and the receptor environment.

13.
Bioconjug Chem ; 34(7): 1221-1233, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37328799

RESUMEN

The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).


Asunto(s)
Membrana Dobles de Lípidos , Células Madre Mesenquimatosas , Humanos , Membrana Dobles de Lípidos/química , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Colesterol/química , Alquinos/metabolismo , Células Madre Mesenquimatosas/metabolismo
14.
Biophys J ; 122(11): E1-E4, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209687

Asunto(s)
Membranas
16.
Nat Metab ; 5(3): 495-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36941451

RESUMEN

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Asunto(s)
Insuficiencia de Crecimiento , ARN Nucleotidiltransferasas , Animales , Humanos , Ratones , Ratones Noqueados , Debilidad Muscular/genética , Músculos , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , Pez Cebra
17.
18.
Nano Lett ; 23(9): 3701-3707, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36892970

RESUMEN

Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Acoplamiento Viral , Ensayos Analíticos de Alto Rendimiento , Unión Proteica
20.
Nat Commun ; 13(1): 7868, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550101

RESUMEN

Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.


Asunto(s)
Enfermedades Óseas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Factor 3 Asociado a Receptor de TNF/metabolismo , Calidad de Vida , Osteoclastos/metabolismo , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/metabolismo , Autofagia , Glicoesfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA