Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 620(7972): 209-217, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438531

RESUMEN

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Asunto(s)
Cromatina , Posicionamiento de Cromosoma , Cromosomas Humanos , Genoma Humano , Glucógeno Sintasa Quinasas , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual , Humanos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamiento de Cromosoma/efectos de los fármacos , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN/análisis , ADN/metabolismo , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Glucógeno Sintasa Quinasas/deficiencia , Glucógeno Sintasa Quinasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Interfase , Reproducibilidad de los Resultados , ARN/análisis , ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual/métodos , Cohesinas
2.
Nat Aging ; 3(4): 402-417, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117791

RESUMEN

Mammalian aging is characterized by the progressive loss of tissue function and increased risk for disease. Accumulation of senescent cells in aging tissues partly contributes to this decline, and targeted depletion of senescent cells in vivo ameliorates many age-related phenotypes. The fundamental molecular mechanisms responsible for the decline of cellular health and fitness during senescence and aging are largely unknown. In this study, we investigated whether chromatin-mediated loss of transcriptional fidelity, known to contribute to fitness and survival in yeast and worms, also occurs during human cellular senescence and mouse aging. Our findings reveal aberrant transcription initiation inside genes during senescence and aging that co-occurs with changes in the chromatin landscape. Interventions that alter these spurious transcripts have profound consequences on cellular health, primarily affecting intracellular signal transduction pathways. We propose that age-related spurious transcription promotes a noisy transcriptome and degradation of coherent transcriptional networks.


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Animales , Ratones , Envejecimiento/genética , Senescencia Celular/genética , Cromatina/genética , Transcriptoma , Fenotipo , Mamíferos/genética
3.
Curr Cardiol Rep ; 25(5): 307-314, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052760

RESUMEN

PURPOSE OF REVIEW: In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS: Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Cromatina/genética , Cromatina/metabolismo , Biofisica
4.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870331

RESUMEN

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Asunto(s)
Células Epiteliales Alveolares , Mecanotransducción Celular , Células Epiteliales Alveolares/metabolismo , Células Cultivadas , Pulmón , Diferenciación Celular/fisiología , Respiración
5.
Genome Biol ; 24(1): 16, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691074

RESUMEN

BACKGROUND: Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS: To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS: Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.


Asunto(s)
Cromatina , Lámina Nuclear , Humanos , Cromatina/metabolismo , Lámina Nuclear/genética , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Diferenciación Celular
7.
PLoS Genet ; 18(11): e1010528, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36449519

RESUMEN

The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Regulación de la Expresión Génica , Humanos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes cdc , Genoma , Células HCT116 , Cohesinas
8.
Elife ; 112022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532013

RESUMEN

The COVID-19 pandemic has created an urgent need for rapid, effective, and low-cost SARS-CoV-2 diagnostic testing. Here, we describe COV-ID, an approach that combines RT-LAMP with deep sequencing to detect SARS-CoV-2 in unprocessed human saliva with a low limit of detection (5-10 virions). Based on a multi-dimensional barcoding strategy, COV-ID can be used to test thousands of samples overnight in a single sequencing run with limited labor and laboratory equipment. The sequencing-based readout allows COV-ID to detect multiple amplicons simultaneously, including key controls such as host transcripts and artificial spike-ins, as well as multiple pathogens. Here, we demonstrate this flexibility by simultaneous detection of 4 amplicons in contrived saliva samples: SARS-CoV-2, influenza A, human STATHERIN, and an artificial SARS calibration standard. The approach was validated on clinical saliva samples, where it showed excellent agreement with RT-qPCR. COV-ID can also be performed directly on saliva absorbed on filter paper, simplifying collection logistics and sample handling.


Asunto(s)
COVID-19 , Orthomyxoviridae , COVID-19/diagnóstico , Humanos , Pandemias , ARN Viral/análisis , SARS-CoV-2/genética , Saliva , Sensibilidad y Especificidad
10.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34611363

RESUMEN

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Asunto(s)
Diferenciación Celular , Genoma , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Integrasas/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Células Musculares/citología , Cresta Neural/metabolismo , Unión Proteica , Dominios Proteicos , Proteolisis , Factores de Transcripción/química , Transcripción Genética , Cohesinas
11.
Cell Syst ; 12(9): 885-899.e8, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34352221

RESUMEN

Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Diferenciación Celular/genética , Fibroblastos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cell Stem Cell ; 28(5): 938-954.e9, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33529599

RESUMEN

Pathogenic mutations in LAMIN A/C (LMNA) cause abnormal nuclear structure and laminopathies. These diseases have myriad tissue-specific phenotypes, including dilated cardiomyopathy (DCM), but how LMNA mutations result in tissue-restricted disease phenotypes remains unclear. We introduced LMNA mutations from individuals with DCM into human induced pluripotent stem cells (hiPSCs) and found that hiPSC-derived cardiomyocytes, in contrast to hepatocytes or adipocytes, exhibit aberrant nuclear morphology and specific disruptions in peripheral chromatin. Disrupted regions were enriched for transcriptionally active genes and regions with lower LAMIN B1 contact frequency. The lamina-chromatin interactions disrupted in mutant cardiomyocytes were enriched for genes associated with non-myocyte lineages and correlated with higher expression of those genes. Myocardium from individuals with LMNA variants similarly showed aberrant expression of non-myocyte pathways. We propose that the lamina network safeguards cellular identity and that pathogenic LMNA variants disrupt peripheral chromatin with specific epigenetic and molecular characteristics, causing misexpression of genes normally expressed in other cell types.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Cardiomiopatía Dilatada/genética , Cromatina/genética , Humanos , Lamina Tipo A/genética , Mutación/genética , Miocitos Cardíacos
13.
Circulation ; 142(24): 2338-2355, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33094644

RESUMEN

BACKGROUND: Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.


Asunto(s)
Metabolismo Energético , Factor de Transcripción GATA4/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Animales , Metabolismo Energético/genética , Factor de Transcripción GATA4/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Células HEK293 , Homeostasis , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Proteínas Nucleares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fenotipo , Unión Proteica , Ratas Sprague-Dawley , Factores de Transcripción/genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
14.
Epigenetics Chromatin ; 13(1): 35, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933557

RESUMEN

BACKGROUND: Gametes are highly differentiated cells specialized to carry and protect the parental genetic information. During male germ cell maturation, histone proteins undergo distinct changes that result in a highly compacted chromatin organization. Technical difficulties exclude comprehensive analysis of precise histone mutations during mammalian spermatogenesis. The model organism Saccharomyces cerevisiae possesses a differentiation pathway termed sporulation which exhibits striking similarities to mammalian spermatogenesis. This study took advantage of this yeast pathway to first perform systematic mutational and proteomics screens on histones, revealing amino acid residues which are essential for the formation of spores. METHODS: A systematic mutational screen has been performed on the histones H2A and H2B, generating ~ 250 mutants using two genetic backgrounds and assessing their ability to form spores. In addition, histones were purified at key stages of sporulation and post-translational modifications analyzed by mass spectrometry. RESULTS: The mutation of 75 H2A H2B residues affected sporulation, many of which were localized to the nucleosome lateral surface. The use of different genetic backgrounds confirmed the importance of many of the residues, as 48% of yeast histone mutants exhibited impaired formation of spores in both genetic backgrounds. Extensive proteomic analysis identified 67 unique post-translational modifications during sporulation, 27 of which were previously unreported in yeast. Furthermore, 33 modifications are located on residues that were found to be essential for efficient sporulation in our genetic mutation screens. The quantitative analysis of these modifications revealed a massive deacetylation of all core histones during the pre-meiotic phase and a close interplay between H4 acetylation and methylation during yeast sporulation. Methylation of H2BK37 was also identified as a new histone marker of meiosis and the mouse paralog, H2BK34, was also enriched for methylation during meiosis in the testes, establishing conservation during mammalian spermatogenesis. CONCLUSION: Our results demonstrate that a combination of genetic and proteomic approaches applied to yeast sporulation can reveal new aspects of chromatin signaling pathways during mammalian spermatogenesis.


Asunto(s)
Evolución Molecular , Gametogénesis , Código de Histonas , Meiosis , Animales , Epigénesis Genética , Histonas/química , Histonas/metabolismo , Metilación , Ratones , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/fisiología
15.
Circ Res ; 126(3): e10-e26, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31822208

RESUMEN

Rationale: Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown. Objective: Here, we sought to determine how cytoskeletal interactions with the LINC complex regulate nuclear homeostasis in the cardiomyocyte. Methods and Results: To this end, we acutely disrupted the LINC complex, microtubules, actin, and intermediate filaments and assessed the consequences on nuclear morphology and genome organization in rat ventricular cardiomyocytes via a combination of super-resolution imaging, biophysical, and genomic approaches. We find that a balance of dynamic microtubules and desmin intermediate filaments is required to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-3, its binding partner in the LINC complex), polymerizing microtubules collapse the nucleus and drive infolding of the nuclear membrane. This results in DNA damage, a loss of genome organization, and broad transcriptional changes. The collapse in nuclear integrity is concomitant with compromised contractile function and may contribute to the pathophysiological changes observed in desmin-related myopathies. Conclusions: Disrupting the tethering of desmin to the nucleus results in a loss of nuclear homeostasis and rapid alterations to cardiomyocyte function. Our data suggest that a balance of forces imposed by intermediate filaments and microtubules is required to maintain nuclear structure and genome organization in the cardiomyocyte.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Matriz Nuclear/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/ultraestructura , Miocitos Cardíacos/ultraestructura , Matriz Nuclear/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Mol Cell ; 77(1): 67-81.e7, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784359

RESUMEN

Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.


Asunto(s)
Cromatina/metabolismo , Poro Nuclear/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Acuaporinas/metabolismo , Sitios de Unión/fisiología , Línea Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Genoma/fisiología , Masculino , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
17.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033129

RESUMEN

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Lámina Nuclear/metabolismo , Células Madre/citología , Animales , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
18.
Cell ; 166(4): 822-839, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518561

RESUMEN

Aging is an inevitable outcome of life, characterized by progressive decline in tissue and organ function and increased risk of mortality. Accumulating evidence links aging to genetic and epigenetic alterations. Given the reversible nature of epigenetic mechanisms, these pathways provide promising avenues for therapeutics against age-related decline and disease. In this review, we provide a comprehensive overview of epigenetic studies from invertebrate organisms, vertebrate models, tissues, and in vitro systems. We establish links between common operative aging pathways and hallmark chromatin signatures that can be used to identify "druggable" targets to counter human aging and age-related disease.


Asunto(s)
Envejecimiento/genética , Epigénesis Genética , Longevidad , Animales , Ensamble y Desensamble de Cromatina , Metilación de ADN , Histonas/metabolismo , Humanos
19.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833731

RESUMEN

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Asunto(s)
Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Transducción de Señal/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular , Daño del ADN , Técnicas de Silenciamiento del Gen , Células HEK293 , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Inflamación/genética , Células MCF-7 , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , FN-kappa B/metabolismo , Neoplasias/fisiopatología , Fenotipo
20.
Cell Rep ; 13(9): 1772-80, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628362

RESUMEN

Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Meiosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Roturas del ADN de Doble Cadena , Histonas/genética , Recombinación Genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA