Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931707

RESUMEN

Cyber-physical systems (CPS) are vital in automating complex tasks across various sectors, yet they face significant vulnerabilities due to the rising threats of cybersecurity attacks. The recent surge in cyber-attacks on critical infrastructure (CI) and industrial control systems (ICSs), with a 150% increase in 2022 affecting over 150 industrial operations, underscores the urgent need for advanced cybersecurity strategies and education. To meet this requirement, we develop a specialised cyber-physical testbed (CPT) tailored for transportation CI, featuring a simplified yet effective automated level-crossing system. This hybrid CPT serves as a cost-effective, high-fidelity, and safe platform to facilitate cybersecurity education and research. High-fidelity networking and low-cost development are achieved by emulating the essential ICS components using single-board computers (SBC) and open-source solutions. The physical implementation of an automated level-crossing visualised the tangible consequences on real-world systems while emphasising their potential impact. The meticulous selection of sensors enhances the CPT, allowing for the demonstration of analogue transduction attacks on this physical implementation. Incorporating wireless access points into the CPT facilitates multi-user engagement and an infrared remote control streamlines the reinitialization effort and time after an attack. The SBCs overwhelm as traffic surges to 12 Mbps, demonstrating the consequences of denial-of-service attacks. Overall, the design offers a cost-effective, open-source, and modular solution that is simple to maintain, provides ample challenges for users, and supports future expansion.

2.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765853

RESUMEN

Many animal aggregations display remarkable collective coordinated movements on a large scale, which emerge as a result of distributed local decision-making by individuals. The recent advances in modelling the collective motion of animals through the utilisation of Nearest Neighbour rules, without the need for centralised coordination, resulted in the development of self-deployment algorithms in Mobile Sensor Networks (MSNs) to achieve various types of coverage essential for different applications. However, the energy consumption associated with sensor movement to achieve the desired coverage remains a significant concern for the majority of algorithms reported in the literature. In this paper, the Nearest Neighbour Node Deployment (NNND) algorithm is proposed to efficiently provide blanket coverage across a given area while minimising energy consumption and enhancing fault tolerance. In contrast to other algorithms that sequentially move sensors, NNND leverages the power of parallelism by employing multiple streams of sensor motions, each directed towards a distinct section of the area. The cohesion of each stream is maintained by adaptively choosing a leader for each stream while collision avoidance is also ensured. These properties contribute to minimising the travel distance within each stream, resulting in decreased energy consumption. Additionally, the utilisation of multiple leaders in NNND eliminates the presence of a single point of failure, hence enhancing the fault tolerance of the area coverage. The results of our extensive simulation study demonstrate that NNND not only achieves lower energy consumption but also a higher percentage of k-coverage.

3.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858921

RESUMEN

Underwater sensor networks (UWSNs) have recently attracted much attention due to their ability to discover and monitor the aquatic environment. However, acoustic communication has posed some significant challenges, such as high propagation delay, low available bandwidth, and high bit error rate. Therefore, proposing a cross-layer protocol is of high importance to the field to integrate different communication functionalities (i.e, an interaction between data link layer and network layer) to interact in a more reliable and flexible manner to overcome the consequences of applying acoustic signals. In this paper, a novel Cross-Layer Mobile Data gathering (CLMD) scheme for Underwater Sensor Networks (UWSNs) is presented to improve the performance by providing the interaction between the MAC and routing layers. In CLMD, an Autonomous Underwater Vehicle (AUV) is used to periodically visit a group of clusters which are responsible for data collection from members. The communications are managed by using a distributed cross-layer solution to enhance network performance in terms of packet delivery and energy saving. The cluster heads are replaced with other candidate members at the end of each operational phase to prolong the network lifetime. The effectiveness of CLMD is verified through an extensive simulation study which reveals the performance improvement in the energy-saving, network lifetime, and packet delivery ratio with varying number of nodes. The effects of MAC protocols are also studied by studying the network performance under various MAC protocols in terms of packet delivery ratio, goodput, and energy consumption with varying density of nodes.

4.
Sensors (Basel) ; 18(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149652

RESUMEN

Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes.

5.
Sensors (Basel) ; 16(3): 297, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26927118

RESUMEN

Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes' collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA