Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomolecules ; 12(10)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291554

RESUMEN

The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.


Asunto(s)
Dominio AAA , Nucleósido-Trifosfatasa , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Hidrólisis , Nucleósidos , Adenosina Trifosfatasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN , ARN , Fosfatos/metabolismo , Proteínas AAA/metabolismo , Oxígeno/metabolismo
2.
Biomolecules ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291556

RESUMEN

To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.


Asunto(s)
Dominio AAA , Nucleósido-Trifosfatasa , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Ácido Aspártico , Protones , Nucleósidos , Catálisis , Agua/metabolismo , Proteínas AAA/metabolismo , Fosfatos/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1861(12): 183051, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449800

RESUMEN

The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.


Asunto(s)
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Sitios de Unión/fisiología , Transporte Biológico Activo/fisiología , Humanos , Potenciales de la Membrana/fisiología , Modelos Moleculares , Modelos Teóricos , Unión Proteica/fisiología , Sodio/metabolismo
4.
Elife ; 72018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30526846

RESUMEN

The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cationes/metabolismo , Simulación de Dinámica Molecular , Nucleósido-Trifosfatasa/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Evolución Biológica , Cationes/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Magnesio/química , Magnesio/metabolismo , Nucleósido-Trifosfatasa/química , Unión Proteica , Conformación Proteica , Agua/química , Agua/metabolismo
5.
Science ; 359(6373): 276-277, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29348224
6.
Physiol Plant ; 161(1): 150-170, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28493482

RESUMEN

The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.


Asunto(s)
Citocromos b/metabolismo , Citocromos c/metabolismo , Fotosíntesis , Archaea/metabolismo , Bacterias/metabolismo , Filogenia
7.
Sci Rep ; 7: 46055, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383048

RESUMEN

The assembly of respiratory complexes into macromolecular supercomplexes is currently a hot topic, especially in the context of newly available structural details. However, most work to date has been done with purified detergent-solubilized material and in situ confirmation is absent. We here set out to enable the recording of respiratory supercomplex formation in living cells. Fluorescent sensor proteins were placed at specific positions at cytochrome c oxidase suspected to either be at the surface of a CI1CIII2CIV1 supercomplex or buried within this supercomplex. In contrast to other loci, sensors at subunits CoxVIIIa and CoxVIIc reported a dense protein environment, as detected by significantly shortened fluorescence lifetimes. According to 3D modelling CoxVIIIa and CoxVIIc are buried in the CI1CIII2CIV1 supercomplex. Suppression of supercomplex scaffold proteins HIGD2A and CoxVIIa2l was accompanied by an increase in the lifetime of the CoxVIIIa-sensor in line with release of CIV from supercomplexes. Strikingly, our data provide strong evidence for defined stable supercomplex configuration in situ.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Complejos Multiproteicos/metabolismo , Respiración de la Célula , Supervivencia Celular , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Modelos Moleculares , Fosforilación Oxidativa , Multimerización de Proteína , Subunidades de Proteína/metabolismo
8.
Biol Direct ; 10: 63, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26472483

RESUMEN

Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na(+)-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix.


Asunto(s)
Bacterias/genética , Eucariontes/genética , Evolución Molecular , Receptores Acoplados a Proteínas G/genética , Rodopsinas Microbianas/genética , Bacterias/metabolismo , Eucariontes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rodopsinas Microbianas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Sodio/metabolismo
9.
Biol Direct ; 10: 29, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26014357

RESUMEN

BACKGROUND: Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. RESULTS: We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. CONCLUSIONS: The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.


Asunto(s)
Apoptosomas , Factor Apoptótico 1 Activador de Proteasas/química , Citocromos c/química , Animales , Apoptosis , Caballos , Humanos , Enlace de Hidrógeno , Lisina/química , Microscopía Electrónica , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sales (Química)/química , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA