Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 675-682, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39159522

RESUMEN

The urgent need to develop efficient, durable, and cost-effective oxygen evolution reaction (OER) catalysts for energy conversion and storage has prompted extensive research. Currently available commercial noble metal-based OER catalysts are expensive and exhibit limited long-term stability. In this study, boron-doped diamond composites (BDDCs) consisting of CoFe and CoFe2C nanoparticles supported by boron-doped diamond (BDD) particles have been prepared. The BDDC catalyst, prepared through a straightforward annealing process, exhibits exceptional durability (up to 72 h at 10 mA cm-2), a low overpotential (306 mV at 10 mA cm-2), and modest Tafel slope (58 mV dec-1). The coherent interfaces between CoFe/CoFe2C nanoparticles and the BDD substrate are essential for enhancing the OER performance. The fabrication method and composite structures presented in this study may facilitate the design and production of promising catalysts.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39356973

RESUMEN

Flexible pressure sensors present enormous potential for applications in health monitoring, human-machine interfacing, and electronic skins (e-skin). However, at the cost of flexibility, the design of flexible pressure sensors has been facing the trade off between high sensitivity and wide sensing range. Herein, we propose a sandwiched structure composed of monolayer films of calcium niobate nanosheets to endow the device with both ultrahigh sensitivity and a wide sensing range. Tunable contact between the two electrodes of the pressure sensor through the gaps in the insulative monolayer film and precise thickness modulation of the monolayer films at the nanoscale result in an ultrahigh sensitivity and wide sensing range of the sensors. By virtue of these two traits, the pressure sensor distinguishes itself with unprecedented performances of ultrahigh sensitivity (6.43 × 104 kPa-1), a wide sensing range (1.94-60.00 kPa), a fast response time (<165 ms), and reliable repeatability. In addition, the sensor has a sensing mechanism transition from capacitive mode to piezoresistive mode from low pressure to high pressure. The sensors demonstrates the ability for motion detection of the human body. This work sheds light on the development of highly sensitive flexible pressure sensors.

3.
Small ; : e2406398, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358960

RESUMEN

Mechanoluminescence (ML)-based sensors are emerging as promising wearable devices, attracting attention for their self-powered visualization of mechanical stimuli. However, challenges such as weak brightness, high activation threshold, and intermittent signal output have hindered their development. Here, a mechanoluminescent/electric dual-mode strain sensor is presented that offers enhanced ML sensing and reliable electrical sensing simultaneously. The strain sensor is fabricated via an optimized dip-coating method, featuring a sandwich structure with a single-walled carbon nanotube (SWNT) interlayer and two polydimethylsiloxane (PDMS)/ZnS:Cu luminescence layers. The integral mechanical reinforcement framework provided by the SWNT interlayer improves the ML intensity of the SWNT/PDMS/ZnS:Cu composite film. Compared to conventional nanoparticle fillers, the ML intensity is enhanced nearly tenfold with a trace amount of SWNT (only 0.01 wt.%). In addition, the excellent electrical conductivity of SWNT forms a conductive network, ensuring continuous and stable electrical sensing. These strain sensors enable comprehensive and precise monitoring of human behavior through both electrical (relative resistance change) and optical (ML intensity) methods, paving the way for the development of advanced visual sensing and smart wearable electronics in the future.

4.
Nano Lett ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388536

RESUMEN

Long-wavelength afterglow emitters are crucial for optoelectronics and information security; however, it remains a challenge in achieving high luminescence efficiency due to the lack of effective modulation in electronic coupling and nonradiative transitions of singlet/triplet excitons. Here, we demonstrate an organic-carbon-dot (CD) hybrid system that operates via a space-confined energy transfer strategy to obtain bright afterglow emission centered at 600 nm with near-unity luminescence efficiency. Photophysical characterization and theoretical calculation confirm efficient luminescence can be assigned to the synergistic effect of intermolecular energy transfer from triplet excitons of CDs to singlets of subluminophores and the intense restraint in nonradiative decay losses of singlet/triplet-state excitons via rationally space-confined rigidification and amination modification. By utilizing precursor engineering, yellow and near-infrared afterglow centered at 575 and 680 nm with luminescence efficiencies of 94.4% and 45.9% has been obtained. Lastly, these highly emissive powders enable superior performance in lighting and information security.

5.
Adv Mater ; 36(40): e2404656, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155814

RESUMEN

Sensitive, flexible, and low false alarm rate X-ray detector is crucial for medical diagnosis, industrial inspection, and scientific research. However, most semiconductors for X-ray detectors are susceptible to interference from ambient light, and their high thickness hinders their application in wearable electronics. Herein, a flexible visible-blind and ultraviolet-blind X-ray detector based on Indium-doped Gallium oxide (Ga2O3:In) single microwire is prepared. Joint experiment-theory characterizations reveal that the Ga2O3:In microwire possess a high crystal quality, large band gap, and satisfactory stability, and reliability. On this basis, an extraordinary sensitivity of 5.9 × 105 µC Gyair -1 cm-2 and a low detection limit of 67.4 nGyair s-1 are achieved based on the prepared Ag/Ga2O3:In/Ag device, which has outstanding operation stability and excellent high temperature stability. Taking advantage of the flexible properties of the single microwire, a portable X-ray detection system is demonstrated that shows the potential to adapt to flexible and lightweight formats. The proposed X-ray detection system enables real-time monitor for X-rays, which can be displayed on the user interface. More importantly, it has excellent resistance to natural light interference, showing a low false alarm rate. This work provides a feasible method for exploring high-performance flexible integrated micro/nano X-ray detection devices.

6.
Phys Rev Lett ; 133(7): 073601, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213549

RESUMEN

In this Letter, we use quantum trajectory theory to simulate heterodyne detection of narrow bandwidth superradiant lasing from an incoherently excited atomic ensemble. To this end, we describe the system dynamics and account for stochastic measurement backaction by second-order mean-field theory. Our simulations show how heterodyne measurements break the phase symmetry, and initiate the atomic coherence with a random phase and a long temporal phase coherence. More importantly, our theory allows direct simulation of experimental procedures for extraction of spectral information which do not lend themselves to evaluation with the quantum regression theorem.

7.
ACS Appl Mater Interfaces ; 16(33): 44328-44339, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106123

RESUMEN

Physical unclonable functions (PUFs) have emerged as an unprecedented solution for modern information security and anticounterfeiting by virtue of their inherent unclonable nature derived from distinctive, randomly generated physical patterns that defy replication. However, the creation of traceable optical PUF tags remains a formidable challenge. Here, we demonstrate a traceable PUF system whose unclonability arises from the random distribution of diamonds and the random intensity of the narrow emission from germanium vacancies (GeV) within the diamonds. Tamper-resistant PUF labels can be manufactured on diverse and intricate structural surfaces by blending diamond particles into polydimethylsiloxane (PDMS) and strategically depositing them onto the surface of objects. The resulting PUF codes exhibit essentially perfect uniformity, uniqueness, reproducibility, and substantial encoding capacity, making them applicable as a private key to fulfill the customization demands of circulating commodities. Through integration of a digitized "challenge-response" protocol, a traceable and highly secure PUF system can be established, which is seamlessly compatible with contemporary digital information technology. Thus, the GeV-PUF system holds significant promise for applications in data security and blockchain anticounterfeiting, providing robust and adaptive solutions to address the dynamic demands of these domains.

8.
Small ; : e2403917, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032004

RESUMEN

Phosphorescence in carbon dots (CDs) from triplet exciton radiative recombination at room temperature has achieved significant advancement. Confinement and nanoconfinement, serving as valuable techniques, are commonly utilized to brighten triplet exciton in CDs, thereby enhancing their phosphorescence. However, a comprehensive and universally applicable physical description of confinement-enhanced phosphorescence is still lacking, despite efforts to understand its underlying nature. In this study, the dominance of entropy is revealed in triplet exciton emission from CDs through the establishment of a microscopic vibration state model. CDs with varying entropy levels are studied, indicating that in a low entropy system, the multi-energy triplet exciton emission in CDs exhibits enhanced brightness, accompanied by a corresponding increase in their lifetimes. The product of lifetime and intensity in CDs serves as a descriptor for their phosphorescence properties. Moreover, an entropy-dependent information variation system based on the CDs is demonstrated. Specifically, in a low-entropy system, information is retained, whereas the corresponding information is erased in a high-entropy system. This work elucidates the underlying physical nature of confinement-enhanced triplet exciton emission, offering a deeper understanding of achieving ultralong phosphorescence in the future.

9.
Adv Mater ; 36(32): e2404694, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857532

RESUMEN

Due to the broadband response and low selectivity of external light, negative photoconductivity (NPC) effect holds great potential applications in photoelectric devices. Herein, different photoresponsive carbon nanodots (CDs) are prepared from diverse precursors and the broadband response from the NPC CDs are utilized to achieve the optoelectronic logic gates and optical imaging for the first time. In detail, the mcu-CDs which are prepared by the microwave-assisted polymerization of citric acid and urea possess the large specific surface area and abundant hydrophilic groups as sites for the adsorption of H2O molecules and thereby present a high conductivity in dark. Meanwhile, the low affinity of mcu-CDs to H2O molecules permits the light-induced desorption of H2O molecules by heat effect and thus endow the mcu-CDs with a low conductivity under illumination. The easy absorption and desorption of H2O molecules contribute to the extraordinary NPC of mcu-CDs. With the broadband NPC response in CDs, the optoelectronic logic gates and flexible optical imaging system are established, achieving the applications of "NOR" or "NAND" logic operations and high-quality optical images. These findings unveil the unique optoelectronic properties of CDs, and have the potential to advance the applications of CDs in optoelectronic devices.

10.
Small ; 20(36): e2312218, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38716754

RESUMEN

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

11.
Nano Lett ; 24(22): 6601-6609, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787739

RESUMEN

Lead-halide perovskite nanocrystals (NCs) are promising for fabricating deep-blue (<460 nm) light-emitting diodes (LEDs), but their development is plagued by low electroluminescent performance and lead toxicity. Herein, the synthesis of 12 kinds of highly luminescent and eco-friendly deep-blue europium (Eu2+)-doped alkali-metal halides (AX:Eu2+; A = Na+, K+, Rb+, Cs+; X = Cl-, Br-, I-) NCs is reported. Through adjustment of the coordination environment, efficient deep-blue emission from Eu-5d → Eu-4f transitions is realized. The representative CsBr:Eu2+ NCs exhibit a high photoluminescence quantum yield of 91.1% at 441 nm with a color coordinate at (0.158, 0.023) matching with the Rec. 2020 blue specification. Electrically driven deep-blue LEDs from CsBr:Eu2+ NCs are demonstrated, achieving a record external quantum efficiency of 3.15% and half-lifetime of ∼1 h, surpassing the reported metal-halide deep-blue NCs-based LEDs. Importantly, large-area LEDs with an emitting area of 12.25 cm2 are realized with uniform emission, representing a milestone toward commercial display applications.

12.
Adv Mater ; 36(29): e2313570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693828

RESUMEN

Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels.

13.
Photoacoustics ; 38: 100612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38711869

RESUMEN

A miniaturized photoacoustic spectroscopy-based gas sensor is proposed for the purpose of detecting sub-ppm-level carbonyl sulfide (OCS) using a tunable mid-infrared interband cascade laser (ICL) and a Helmholtz photoacoustic cell. The tuning characteristics of the tunable ICL with a center wavelength of 4823.3 nm were investigated to achieve the optimal driving parameters. A Helmholtz photoacoustic cell with a volume of ∼2.45 mL was designed and optimized to miniaturize the measurement system. By optimizing the modulation parameters and signal processing, the system was verified to have a good linear response to OCS concentration. With a lock-in amplifier integration time of 10 s, the 1σ noise standard deviation in differential mode was 0.84 mV and a minimum detection limit (MDL) of 409.2 ppbV was achieved at atmospheric pressure and room temperature.

14.
ACS Appl Mater Interfaces ; 16(20): 26643-26652, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716902

RESUMEN

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

15.
Adv Sci (Weinh) ; 11(23): e2308337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572504

RESUMEN

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

16.
Opt Lett ; 49(8): 2101-2104, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621086

RESUMEN

The introduction of cantilever-based fiber-optic microphones (FOMs) has proven to be effective in acoustic sensing. Further improvements in cantilevers face two key constraints: the challenge of achieving minimal sizes with sufficient reflective area and the trade-off between sensitivity and response bandwidth. Herein, we present a geometry optimization framework for a cantilever-based FOM that addresses this issue. Employing drumstick-shaped cantilevers housed within a Fabry-Perot (F-P) interferometric structure, we showcase a heightened sensitivity of 302.8 mV/Pa at 1 kHz and a minimum detectable acoustic pressure (MDP) of 2.35 µPa/H z. Notably, these metrics outperform those of the original rectangular cantilever with identical dimensions. Furthermore, our proposed cantilever effectively mitigates the reduction in resonance frequencies, thereby improving the response bandwidth. This geometry optimization framework offers considerable design flexibility and scalability, making it especially suitable for high-performance acoustic sensing applications.

17.
ACS Nano ; 18(10): 7610-7617, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38426715

RESUMEN

The quest for solar-blind photodetectors (SBPDs) with exceptional optoelectronic properties for imaging applications has prompted the investigation of SBPD arrays. Ga2O3, characterized by its ultrawide bandgap and low growth cost, has emerged as a promising material for solar-blind detection. In this study, SBPD arrays were fabricated by weaving Sn-doped ß-Ga2O3 microbelts (MBs). These MBs, which have a conductive core surrounded by a high-resistivity depletion surface layer resulting from the segregation of Sn and oxygen, are woven into a grid structure. Each intersection of the MBs functions as a photodetector pixel, with the intersecting MBs serving as the output electrodes of the pixel. This design simplifies the readout circuit for the photodetector array. The solar-blind photodetector array demonstrates superior solar-blind detection performance, including a dark current of 0.5 pA, a response time of 38.8 µs, a light/dark current ratio of 108, and a responsivity of 300 A/W. This research may provide a feasible strategy for the fabrication of photodetector arrays, thus pushing forward the application of photodetectors in imaging.

18.
Adv Sci (Weinh) ; 11(24): e2309126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477425

RESUMEN

Along with the increasing integration density and decreased feature size of current semiconductor technology, heterointegration of the Si-based devices with diamond has acted as a promising strategy to relieve the existing heat dissipation problem. As one of the heterointegration methods, the microwave plasma chemical vapor deposition (MPCVD) method is utilized to synthesize large-scale diamond films on a Si substrate, while distinct structures appear at the Si-diamond interface. Investigation of the formation mechanisms and modulation strategies of the interface is crucial to optimize the heat dissipation behaviors. By taking advantage of electron microscopy, the formation of the epitaxial ß-SiC interlayer is found to be caused by the interaction between the anisotropically sputtered Si and the deposited amorphous carbon. Compared with the randomly oriented ß-SiC interlayer, larger diamond grain sizes can be obtained on the epitaxial ß-SiC interlayer under the same synthesis condition. Moreover, due to the competitive interfacial reactions, the epitaxial ß-SiC interlayer thickness can be reduced by increasing the CH4/H2 ratio (from 3% to 10%), while further increase in the ratio (to 20%) can lead to the broken of the epitaxial relationship. The above findings are expected to provide interfacial design strategies for multiple large-scale diamond applications.

19.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491012

RESUMEN

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Luminiscencia
20.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377204

RESUMEN

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA