Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 356: 141947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599332

RESUMEN

Covalent organic frameworks (COFs) have recently emerged as a kind of promising photocatalytic platform in addressing the growing threat of trace pollutants in aquatic environments. Along this, we propose a strategy of constructing internal electric field (IEF) in COFs through the dipole moment regulation, which intrinsically facilitates the separation and transfer of photogenerated excitons. Two COFs of BTT-TZ-COF and BTT-TB-COF are developed by linking the electron-donor of benzotrithiophene (BTT) block and the electron-acceptor of triazine (TZ) or tribenzene (TB) block, respectively. DFT calculations demonstrate TZ block with larger dipole moment can achieve more efficient IEF due to the stronger electron-attractive force and hence narrower bandgap. Moreover, featuring the highly-order crystalline structure for accelerating photo-excitons transfer and rich porosity for facilitating the adsorption, BTT-TZ-COF exhibited an excellent universal performance of photocatalytic degradations of various dyes. Specifically, a superior photodegradation efficiency of 99% Rhodamine B (RhB) is achieved within 20 min under the simulated sunlight. Therefore, this convenient construction approach of enhanced IEF in COFs through rational regulation of the dipole moment can be a promising way to realize high photocatalytic activity.


Asunto(s)
Estructuras Metalorgánicas , Rodaminas , Catálisis , Rodaminas/química , Estructuras Metalorgánicas/química , Fotólisis , Procesos Fotoquímicos , Adsorción , Contaminantes Químicos del Agua/química , Electricidad
2.
Chem Sci ; 14(31): 8321-8326, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37564406

RESUMEN

A pain-point for material development is that computer-screened structures are usually difficult to realize in experiments. Herein, considering that linkages are crucial for building functional nanoporous polymers with diverse functionalities, we develop an efficient approach for constructing target-specific conjugated microporous polymers (CMPs) based on screening feasible polymerization pathways. Taking the deep removal of SO2 from a SO2/CO2 mixture as the specific target, we precisely screen the linkages and fabricate different CMPs by manipulating the porosity and hydrophobicity. Based on the optimized Buchwald-Hartwig amination, the obtained CMPs can achieve SO2/CO2 selectivity as high as 113 and a moderate Qst of 30 kJ mol-1 for feasible regeneration. Furthermore, the potential of CMPs for practical SO2/CO2 separation is demonstrated through continued breakthrough tests. The SO2 binding sites are consistent with the screening results and proved by in situ Fourier transform infrared spectroscopy and grand canonical Monte Carlo simulation, providing solid feasibility for synthesis realizability for future boosts of task-specific CMPs.

3.
Chemosphere ; 338: 139378, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37419152

RESUMEN

Increases in soil available nitrogen (N) influence N-cycle gene abundances and emission of nitrous oxide (N2O), which is primarily due to N-induced soil acidification in forest. Moreover, the extent of microbial-N saturation could control microbial activity and N2O emission. The contributions of N-induced alterations of microbial-N saturation and N-cycle gene abundances to N2O emission have rarely been quantified. Here, the mechanism underlying N2O emission under N additions (three chemical forms of N, i.e., NO3--N, NH4+-N and NH4NO3-N, and each at two rates, 50 and 150 kg N ha-1 year-1, respectively) spanning 2011-2021 was investigated in a temperate forest in Beijing. Results showed N2O emissions increased at both low and high N rates of all the three forms compared with control during the whole experiment. However, N2O emissions were lower in high rate of NH4NO3-N and NH4+-N treatments than the corresponding low N rates in the recent three years. Effects of N on microbial-N saturation and abundances of N-cycle genes were dependent on the N rate and form as well as experimental time. Specifically, negative effects of N on N-cycle gene abundances and positive effects of N on microbial-N saturation were demonstrated in high N rate treatments, particularly with NH4+ addition during 2019-2021. Such effects were associated with soil acidification. A hump-backed trend between microbial-N saturation and N2O emissions was observed, suggesting N2O emissions decreased with increase of the microbial-N saturation. Furthermore, N-induced decreases in N-cycle gene abundances restrained N2O emissions. In particular, the nitrification process, dominated by ammonia-oxidize archaea, is critical to determination of N2O emissions in response to the N addition in the temperate forest. We confirmed N addition promoted soil microbial-N saturation and reduced N-cycle gene abundances, which restrained the continuous increase in N2O emissions. It is important for understanding the forest-N-microbe nexus under climate change.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Microbiología del Suelo , Ciclo del Nitrógeno , Bosques , Óxido Nitroso/análisis
4.
Angew Chem Int Ed Engl ; 62(14): e202218742, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36655733

RESUMEN

Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA