Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2998-3010, 2024 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-39319720

RESUMEN

The organelles in the multi-nucleated filamentous fungus Aspergillus oryzae present polymorphism. To observe the organelle morphology in A. oryzae and provide references for the localization prediction of unknown proteins and the disclosure of biological reaction pathways in A. oryzae, we fused different subcellular localization signals with green fluorescent protein (GFP) to obtain different subcellular localization vectors, which were then transferred into A. oryzae by Agrobacterium tumefaciens-mediated transformation. The A. oryzae reporter strains with fluorescence-labeled nuclei, mitochondria, endoplasmic reticulum, vacuole, lipid droplets, peroxisome, and Golgi apparatus were successfully constructed. Furthermore, staining with small-molecule specific dyes was carried out to validate the co-localization of fluorescence-labeled mitochondria, nuclei, and lipid droplets in the reporter strains, which further confirmed that the reporter strains were successfully constructed. The distribution and morphology of fluorescence-labeled organelles were observed at different growth stages and under different culture conditions. The constructed reporter strains provide basic tools for studying the organelle morphology, localization of unknown target proteins, and subcellular localization in A. oryzae.


Asunto(s)
Aspergillus oryzae , Proteínas Fluorescentes Verdes , Orgánulos , Aspergillus oryzae/genética , Aspergillus oryzae/citología , Aspergillus oryzae/metabolismo , Orgánulos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Vectores Genéticos , Coloración y Etiquetado/métodos , Fluorescencia
2.
3 Biotech ; 14(5): 136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682096

RESUMEN

Ergosterol is an important component of fungal cell membrane. Ergosterol biosynthesis involves sterol C-14 reductase, a key enzyme in ergosterol biosynthesis, which has been well studied in Saccharomyces cerevisiae. However, little studies about this important enzyme in Aspergillus oryzae. In this study, two sterol C-14 reductases named AoErg24A and AoErg24B were identified in A. oryzae using bioinformatics analysis. Through phylogenetic tree, expression pattern, subcellular localization, and yeast functional complementation analyses, we discovered that both AoErg24A and AoErg24B are conserved and localized to the endoplasmic reticulum (ER). Both enzymes can partially restore the temperature sensitivity phenotype of a S. cerevisiae erg24 weak mutant. Overexpression of AoErg24A in A. oryzae increased 1.6 times of ergosterol content, while overexpression of AoErg24B led to a slight decrease of ergosterol. Both genes affect the sporulation of A. oryzae. These results uncovered that the two genes function differently in ergosterol biosynthesis. Thus, this study further enhances our understanding of ergosterol biosynthesis in A. oryzae and lays a good foundation for A. oryzae to be used in industrial ergosterol production.

3.
Front Genet ; 14: 1009746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755574

RESUMEN

Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.

4.
Appl Environ Microbiol ; 88(6): e0237221, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35138925

RESUMEN

Thiolase plays important roles in lipid metabolism. It can be divided into degradative thiolases (thioase I) and biosynthetic thiolases (thiolases II), which are involved in fatty acid ß-oxidation and acetoacetyl-CoA biosynthesis, respectively. The Saccharomyces cerevisiae genome harbors only one gene each for thioase I and thiolase II, namely, Pot1 and Erg10, respectively. In this study, six thiolases (named AoErg10A to AoErg10F) were identified in Aspergillus oryzae genome using bioinformatics analysis. Quantitative reverse transcription-PCR (qRT-PCR) indicated that the expression of these six thiolases varied at different growth times and under different forms of abiotic stress. Subcellular localization analysis showed that AoErg10A was located in the cytoplasm, AoErg10B and AoErg10C were in the mitochondria, and AoErg10D, AoErg10E, and AoErg10F were in the peroxisome. Yeast heterologous complementation assays revealed that AoErg10A, AoErg10D, AoErg10E, AoErg10F, and cytoplasmic AoErg10B (AoErg10BΔMTS) recovered the phenotypes of S. cerevisiae erg10 weak and lethal mutants and that only AoErg10D, AoErg10E, and AoErg10F recovered the phenotype of the pot1 mutant that cannot use oleic acid as the carbon source. Overexpression of AoErg10s affected either the growth speed or the sporulation of the transgenic strains. In addition, the fatty acid and ergosterol content changed in all the AoErg10-overexpressing strains. This study revealed the function of six thiolases in A. oryzae and their effect on growth and fatty acid and ergosterol biosynthesis, which may lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi. IMPORTANCE Thiolases, including thioase I and thiolase II, play important roles in lipid metabolism. Aspergillus oryzae, one of the most industrially important filamentous fungi, has been widely used for manufacturing oriental fermented food such as sauce, miso, and sake for a long time. In addition, A. oryzae has a high capability in production of high lipid content and has been used for lipid production. Thus, it is very important to investigate the function of thiolases in A. oryzae. In this study, six thiolase (named AoErg10A to AoErg10F) were identified by bioinformatics analysis. Unlike other reported thiolases in fungi, three of the six thiolases showed dual functions of thioase I and thiolase II in S. cerevisiae, indicating that the lipid metabolism is more complex in A. oryzae. The reveal of function of these thiolases in A. oryzae can lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi.


Asunto(s)
Aspergillus oryzae , Acetil-CoA C-Acetiltransferasa/genética , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ergosterol , Ácidos Grasos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Appl Opt ; 57(26): 7435-7439, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30461808

RESUMEN

This study proposes an efficient approach that uses a 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multiwalled carbon nanotubes (MWCNTs). We investigate the effects of laser irradiation time (from 1 to 6 s) on the structure changes and the welding quality of crossed MWCNTs using a scanning electron microscope, transmission electron microscope, and Raman spectroscopy. The experimental results demonstrate that (1) after 2 or 3 s laser irradiation, moderate temperature of MWCNTs can be formed and can cause a higher degree of graphitization and (2) the degree of graphitization and effective contact of nanowelded MWCNT junctions strongly affects its electrical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA