Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 148, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351014

RESUMEN

Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Humanos , Regulación hacia Arriba/genética , Neoplasias Gástricas/patología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transformación Celular Neoplásica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
2.
Cell Death Dis ; 13(11): 989, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424389

RESUMEN

The deubiquitinating enzyme family in tumor progression play important role in intracellular protein degradation. The proteasome subunit alpha type 1 (PSMA1) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMA1 in gastric cancer (GC) progression and the underlying mechanisms. The expression of PSMA1 in human GC samples and GC cell lines was examined by western blot analysis, real-time PCR, immunohistochemistry (IHC), and in vitro ubiquitination assays and established a xenograft mouse model. We found that PSMA1 was upregulated in GC and promoted proliferation, migration and invasion in GC cells. Herein, we report transcriptional co-activator with PDZ-binding motif (TAZ) was a downstream gene of PSMA1. Mechanistically, PSMA1 directly interacted with and stabilized TAZ via deubiquitination in GC. Furthermore, we found that TAZ was the essential mediator of PSMA1-modulated oncogenic activity in vitro and in vivo. Examination of clinical samples confirmed that elevated mediators of PSMA1, concomitant with increased TAZ abundance, correlate with human GC progression. These data suggested that PSMA1 promotes GC progression and proliferation by deubiquitinating TAZ. PSMA1 promotes GC progression and proliferation regarding PSMA1-mediated deubiquitinating enzyme activity and suggest potential therapeutic targets for GC management.


Asunto(s)
Carcinoma , Complejo de la Endopetidasa Proteasomal , Neoplasias Gástricas , Animales , Humanos , Ratones , Enzimas Desubicuitinizantes/genética , Modelos Animales de Enfermedad , Oncogenes , Neoplasias Gástricas/genética , Factores de Transcripción , Complejo de la Endopetidasa Proteasomal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA