Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 32(49): 17582-96, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223282

RESUMEN

Activation of the dynorphin/κ-opioid receptor (KOR) system by repeated stress exposure or agonist treatment produces place aversion, social avoidance, and reinstatement of extinguished cocaine place preference behaviors by stimulation of p38α MAPK, which subsequently causes the translocation of the serotonin transporter (SERT, SLC6A4) to the synaptic terminals of serotonergic neurons. In the present study we extend those findings by showing that stress-induced potentiation of cocaine conditioned place preference occurred by a similar mechanism. In addition, SERT knock-out mice did not show KOR-mediated aversion, and selective reexpression of SERT by lentiviral injection into the dorsal raphe restored the prodepressive effects of KOR activation. Kinetic analysis of several neurotransporters demonstrated that repeated swim stress exposure selectively increased the V(max) but not K(m) of SERT without affecting dopamine transport or the high-capacity, low-affinity transporters. Although the serotonergic neurons in the dorsal raphe project throughout the forebrain, a significant stress-induced increase in cell-surface SERT expression was only evident in the ventral striatum, and not in the dorsal striatum, hippocampus, prefrontal cortex, amygdala, or dorsal raphe. Stereotaxic microinjections of the long-lasting KOR antagonist norbinaltorphimine demonstrated that local KOR activation in the nucleus accumbens, but not dorsal raphe, mediated this stress-induced increase in ventral striatal surface SERT expression. Together, these results support the hypothesis that stress-induced activation of the dynorphin/KOR system produces a transient increase in serotonin transport locally in the ventral striatum that may underlie some of the adverse consequences of stress exposure, including the potentiation of the rewarding effects of cocaine.


Asunto(s)
Reacción de Prevención/fisiología , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dinorfinas/fisiología , Recompensa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Dinorfinas/metabolismo , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microinyecciones/métodos , Naltrexona/administración & dosificación , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacocinética , Nicotina/efectos adversos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Núcleos del Rafe/fisiología , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Sinaptosomas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
2.
J Biol Chem ; 287(50): 41595-607, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23086943

RESUMEN

KOR activation of Gßγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR. In this study, we compared the signaling initiated by the available partial agonists. Pentazocine was significantly more potent at activating p38 MAPK in hKOR than rKOR expressed in HEK293 cells but equally potent at arrestin-independent activation of ERK1/2 in hKOR and rKOR. Similarly, butorphanol increased phospho-p38-ir in hKOR-expressing cells but did not activate p38 in rKOR-HEK293. Like pentazocine, butorphanol was equally efficacious at activating ERK1/2 in rKOR and hKOR. In contrast, levorphanol, nalorphine, and U50,488 did not distinguish between hKOR and rKOR in p38 MAPK activation. Consistent with its low potency at p38 activation, pentazocine did not produce conditioned place aversion in mice. hKOR lacks the Ser-369 phosphorylation site in rKOR required for G protein receptor kinase/arrestin-dependent p38 activation, but mutation of the Ser-358 to asparagine in hKOR blocked p38 activation without affecting the acute arrestin-independent activation of ERK1/2. This study shows that hKOR activates p38 MAPK through a phosphorylation and arrestin-dependent mechanism; however, activation differs between hKOR and rKOR for some ligands. These functional selectivity differences have important implications for preclinical screening of partial KOR agonists.


Asunto(s)
Analgésicos Opioides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptores Opioides kappa/metabolismo , Sustitución de Aminoácidos , Animales , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Células HEK293 , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/genética , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Especificidad de la Especie , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
J Biol Chem ; 287(9): 6928-40, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22223642

RESUMEN

G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.


Asunto(s)
División Celular/fisiología , Centrosoma/enzimología , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Fase G2/fisiología , Transducción de Señal/fisiología , Aurora Quinasas , Membrana Celular/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Neuron ; 71(3): 498-511, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835346

RESUMEN

Maladaptive responses to stress adversely affect human behavior, yet the signaling mechanisms underlying stress-responsive behaviors remain poorly understood. Using a conditional gene knockout approach, the α isoform of p38 mitogen-activated protein kinase (MAPK) was selectively inactivated by AAV1-Cre-recombinase infection in specific brain regions or by promoter-driven excision of p38α MAPK in serotonergic neurons (by Slc6a4-Cre or ePet1-Cre) or astrocytes (by Gfap-CreERT2). Social defeat stress produced social avoidance (a model of depression-like behaviors) and reinstatement of cocaine preference (a measure of addiction risk) in wild-type mice, but not in mice having p38α MAPK selectively deleted in serotonin-producing neurons of the dorsal raphe nucleus. Stress-induced activation of p38α MAPK translocated the serotonin transporter to the plasma membrane and increased the rate of transmitter uptake at serotonergic nerve terminals. These findings suggest that stress initiates a cascade of molecular and cellular events in which p38α MAPK induces a hyposerotonergic state underlying depression-like and drug-seeking behaviors.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Depresión/genética , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Neuronas/fisiología , Serotonina/fisiología , Estrés Psicológico/psicología , Animales , Reacción de Prevención/fisiología , Conducta de Elección/fisiología , Trastornos Relacionados con Cocaína/psicología , Condicionamiento Psicológico/fisiología , Depresión/psicología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Núcleos del Rafe/metabolismo , Núcleos del Rafe/fisiología , Núcleos del Rafe/fisiopatología , Receptores Opioides/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología , Receptor de Nociceptina
5.
J Biol Chem ; 285(11): 8316-29, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20056609

RESUMEN

In addition to regulating receptor activity, non-visual arrestins function as scaffolds for numerous intracellular signaling cascades and as regulators of gene transcription. Here we report that the two non-visual arrestins, arrestin2 and arrestin3, localize to the centrosome, a key organelle involved in microtubule nucleation and bipolar mitotic spindle assembly. Both arrestins co-localized with the centrosomal marker gamma-tubulin during interphase and mitosis and were found in purified centrosome preparations. In vitro binding assays demonstrated that both arrestins directly interact with gamma-tubulin. Knockdown of either arrestin by RNA interference resulted in multinucleation, centrosome amplification, and mitotic defects, although only the loss of arrestin2 triggered aberrant microtubule nucleation. Importantly, overexpression of wild type arrestin rescued the multinucleation phenotype and restored normal centrosome number in arrestin siRNA-transfected cells. Moreover, overexpression of arrestin2 or -3 rescued the multinucleation defect observed in MDA-MB-231 breast cancer cells. Taken together, our data reveal that non-visual arrestins are novel centrosomal components and regulate normal centrosome function.


Asunto(s)
Arrestinas/metabolismo , Centrosoma/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Arrestinas/genética , Neoplasias de la Mama , Bovinos , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Interfase/fisiología , Riñón/citología , Microscopía Confocal , Mitosis/fisiología , Fosfatidiletanolaminas , ARN Interferente Pequeño , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Transfección , beta-Arrestinas
6.
Platelets ; 19(8): 614-23, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19012179

RESUMEN

Thrombin-induced platelet activation leads to tyrosine phosphorylation of hematopoietic lineage cell-specific protein-1 (HS1), a 75 kDa adapter protein expressed exclusively in cells of hematopoietic lineage. We have shown HS1 to be a functionally important signaling molecule downstream of PAR-4 and GPVI collagen receptor. We have thus begun to elucidate PAR signaling pathway of HS1 phosphorylation, and its functional implications. PAR-1 and PAR-4 activating peptides (SFLLRN and AYPGKF, respectively) induced HS1 phosphorylation in a Gq-dependent manner as shown by incubation with the Gq inhibitor, YM254890. Consistently, HS1 phosphorylation was abolished in platelets from Gq deficient mice upon AYPGKF stimulation. Treatment with ADP receptor antagonists did not affect HS1 phosphorylation. Pretreatment of platelets with Src kinase inhibitors abolished HS1 phosphorylation. Further Syk activation, as measured by tyrosine phosphorylation of Syk (residues 525/526), in response to PAR activation was abolished in the presence of Src inhibitors. HS1 null mice show inhibition of PAR-mediated thromboxane A2 generation compared to wild type littermates. Phosphorylation of Erk, a key signaling molecule in thromboxane generation, was also diminished in HS1 null mice platelets. Based on these findings, we conclude that tyrosine phosphorylation of HS1 occurs downstream of both PAR-1 and PAR-4. HS1 phosphorylation is a Gq mediated response regulated by Src kinases. Thus, HS1 may mediate PAR-induced thromboxane generation through regulation of Erk phosphorylation.


Asunto(s)
Plaquetas/metabolismo , Proteínas Sanguíneas/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor Estimulante de Colonias de Granulocitos/fisiología , Receptor PAR-1/metabolismo , Receptores Proteinasa-Activados/metabolismo , Tromboxano A2/biosíntesis , Proteínas Adaptadoras Transductoras de Señales , Animales , Plaquetas/citología , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Factor Estimulante de Colonias de Granulocitos/deficiencia , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Ratones , Ratones Noqueados , Fosforilación , Transducción de Señal , Familia-src Quinasas/metabolismo
7.
Biochem J ; 404(2): 299-308, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17298299

RESUMEN

We have previously shown that ADP-induced thromboxane generation in platelets requires signalling events from the G(q)-coupled P2Y1 receptor (platelet ADP receptor coupled to stimulation of phospholipase C) and the G(i)-coupled P2Y12 receptor (platelet ADP receptor coupled to inhibition of adenylate cyclase) in addition to outside-in signalling. While it is also known that extracellular calcium negatively regulates ADP-induced thromboxane A2 generation, the underlying mechanism remains unclear. In the present study we sought to elucidate the signalling mechanisms and regulation by extracellular calcium of ADP-induced thromboxane A2 generation in platelets. ERK (extracllular-signal-regulated kinase) 2 activation occurred when outside-in signalling was blocked, indicating that it is a downstream event from the P2Y receptors. However, blockade of either P2Y1 or the P2Y12 receptors with corresponding antagonists completely abolished ERK phosphorylation, indicating that both P2Y receptors are required for ADP-induced ERK activation. Inhibitors of Src family kinases or the ERK upstream kinase MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] abrogated ADP-induced ERK phosphorylation and thromboxane A2 generation. Finally ADP- or G(i)+G(z)-induced ERK phosphorylation was blocked in the presence of extracellular calcium. The present studies show that ERK2 is activated downstream of P2Y receptors through a complex mechanism involving Src kinases and this plays an important role in ADP-induced thromboxane A2 generation. We also conclude that extracellular calcium blocks ADP-induced thromboxane A2 generation through the inhibition of ERK activation.


Asunto(s)
Plaquetas/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Receptores Purinérgicos P2/fisiología , Adenosina Trifosfato/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Activación Enzimática , Proteínas de Unión al GTP/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Transducción de Señal , Tromboxano A2/biosíntesis
8.
Blood ; 108(9): 3027-34, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16857990

RESUMEN

ADP-induced TXA2 generation requires the costimulation of P2Y1, P2Y12, and the GPIIb/IIIa receptors. Signaling events downstream of the P2Y receptors that contribute to ADP-induced TXA2 generation have not been clearly delineated. In this study, we have investigated the role of G-protein-gated inwardly rectifying potassium channels (GIRKs), a recently identified functional effector for the P2Y12 receptor, in the regulation of ADP-induced TXA2 generation. At 10-microM concentrations, the 2 structurally distinct GIRK channel blockers, SCH23390 and U50488H, caused complete inhibition of ADP-induced cPLA2 phosphorylation and TXA2 generation, without affecting the conversion of AA to TXA2 or ADP-induced primary platelet aggregation in aspirin-treated platelets. In addition, Src family kinase selective inhibitors abolished 2MeSADP-mediated cPLA2 phosphorylation and TXA2 generation. Furthermore, these GIRK channel blockers completely blocked Gi-mediated Src kinase activation, suggesting that GIRK channels are upstream of Src family tyrosine kinase activation. In weaver mouse platelets, which have dysfunctional GIRK2 subunits, ADP-induced TXA2 generation was impaired. However, we did not observe any defect in 2MeSADP-induced platelet functional responses in GIRK2-null mouse platelets, suggesting that functional channels composed of other GIRK subunits contribute to ADP-induced TXA2 generation, via the regulation of the Src and cPLA2 activity.


Asunto(s)
Adenosina Difosfato/farmacología , Plaquetas/enzimología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Fosfolipasas A/sangre , Familia-src Quinasas/sangre , Animales , Plaquetas/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Humanos , Ratones , Agregación Plaquetaria/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Valores de Referencia , Tromboxano A2/sangre
9.
Blood ; 106(2): 550-7, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15811957

RESUMEN

Thrombin has been known to cause tyrosine phosphorylation of protein kinase C delta (PKCdelta) in platelets, but the molecular mechanisms and function of this tyrosine phosphorylation is not known. In this study, we investigated the signaling pathways used by protease-activated receptors (PARs) to cause tyrosine phosphorylation of PKCdelta and the role of this event in platelet function. PKCdelta was tyrosine phosphorylated by either PAR1 or PAR4 in a concentration- and time-dependent manner in human platelets. In particular, the tyrosine 311 residue was phosphorylated downstream of PAR receptors. Also the tyrosine phosphorylation of PKCdelta did not occur in Galpha(q)-deficient mouse platelets and was inhibited in the presence of a phospholipase C (PLC) inhibitor U73122 and calcium chelator BAPTA (5,5'-dimethyl-bis(o-aminophenoxy)ethane-N, N, N ', N '-tetraacetic acid), suggesting a role for Galpha(q) pathways and calcium in this event. Both PAR1 and PAR4 caused a time-dependent activation of Src (pp60c-src) tyrosine kinase and Src tyrosine kinase inhibitors completely blocked the tyrosine phosphorylation of PKCdelta. Inhibition of tyrosine phosphorylation or the kinase activity of PKCdelta dramatically blocked PAR-mediated thromboxane A2 generation. We conclude that thrombin causes tyrosine phosphorylation of PKCdelta in a calcium- and Src-family kinase-dependent manner in platelets, with functional implications in thromboxane A2 generation.


Asunto(s)
Plaquetas/metabolismo , Ácido Egtácico/análogos & derivados , Proteína Quinasa C/sangre , Trombina/metabolismo , Adenosina Difosfato/farmacología , Animales , Plaquetas/efectos de los fármacos , Quelantes/farmacología , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Humanos , Técnicas In Vitro , Ratones , Modelos Biológicos , Fosforilación , Proteína Quinasa C/química , Proteína Quinasa C-delta , Pirrolidinonas/farmacología , Receptor PAR-1/sangre , Receptores de Trombina/sangre , Transducción de Señal , Treonina/química , Fosfolipasas de Tipo C/antagonistas & inhibidores , Tirosina/química , Familia-src Quinasas/antagonistas & inhibidores
10.
Blood ; 105(7): 2749-56, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15546949

RESUMEN

G(12/13) or G(q) signaling pathways activate platelet GPIIb/IIIa when combined with G(i) signaling. We tested whether combined G(i) and G(z) pathways also cause GPIIb/IIIa activation and compared the signaling requirements of these events. Platelet aggregation occurred by combined stimulation of G(i) and G(z) pathways in human platelets and in P2Y1-deficient and G alpha(q)-deficient mouse platelets, confirming that the combination of G(i) and G(z) signaling causes platelet aggregation. When G(i) stimulation was combined with G(z) stimulation, there was a small mobilization of intracellular calcium. Chelation of intracellular calcium decreased the extent of this platelet aggregation, whereas it abolished the G(q) plus G(i)-mediated platelet aggregation. Costimulation of G(i) plus G(z) pathways also caused thromboxane generation that was dependent on outside-in signaling and was inhibited by PP2, a Src family tyrosine kinase inhibitor. Src family tyrosine kinase inhibitors also inhibited platelet aggregation and decreased the PAC-1 binding caused by costimulation of G(i) and G(z) signaling pathways in aspirin-treated platelets. However, Src family kinase inhibitors did not affect G(q) plus G(i)-mediated platelet aggregation. We conclude that the combination of G(i) plus G(z) pathways have different requirements than G(q) plus G(i) pathways for calcium and Src family kinases in GPIIb/IIIa activation and thromboxane production.


Asunto(s)
Plaquetas/metabolismo , Calcio/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Tromboxanos/metabolismo , Familia-src Quinasas/metabolismo , Animales , Aspirina/farmacología , Plaquetas/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Inhibidores de Agregación Plaquetaria/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estimulación Química
11.
Semin Thromb Hemost ; 30(4): 411-8, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15354262

RESUMEN

Adenosine diphosphate (ADP) and thromboxane A (2) (TXA (2)) are important physiological activators of platelets and exert their effects by acting on cell surface receptors. Platelet nucleotide receptors can be distinguished as three separate subtypes of the P2 receptor family. The P2X (1) receptor is a ligand-gated adenosine triphosphate (ATP) receptor that was originally mistaken for an ADP receptor. This calcium-influx-causing receptor mediates platelet shape change and plays an important role in thrombus formation in small arterioles. The P2Y (1) receptor, through activation of G (q) and phospholipase C, is required for ADP-induced platelet shape change, fibrinogen receptor activation, and TXA (2) generation. The G (i)-coupled P2Y (12) receptor plays an important role in platelet aggregation, potentiation of dense granule release, and TXA (2) generation. Both the P2Y receptors are crucial for in vivo thrombus formation. TXA (2) stimulates two subtypes of G protein-coupled TP receptor, TPalpha and TPbeta, but its effects in platelets are mediated predominantly through the alpha isoform. Although interference with the activation of G protein-coupled ADP or TP receptors results in increased bleeding times and protection from thromboembolism, TP receptor antagonists did not translate into effective antiplatelet drugs. Blockade of ADP receptor is a mode of newer classes of antithrombotic drugs in the coming era. This review focuses on the contribution of different nucleotide receptors and TP receptors to platelet function and their potential as antithrombotic agents.


Asunto(s)
Plaquetas/fisiología , Receptores de Tromboxano A2 y Prostaglandina H2/sangre , Nucleótidos de Adenina/fisiología , Animales , Humanos , Proteínas de la Membrana/sangre , Modelos Biológicos , Receptores Purinérgicos P2/sangre , Receptores Purinérgicos P2Y12 , Receptores Purinérgicos P2Y2
12.
Blood ; 104(5): 1335-43, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15142872

RESUMEN

The role of the G(i)-coupled platelet P2Y(12) receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to alphaIIbbeta3 activation in human platelets has not been delineated. As the P2Y(12) receptor has been shown to activate G protein-gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y(12) receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structurally distinct GIRK inhibitors, SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) and U50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(pyrrolidinyl)cyclohexyl] benzeneacetamide methanesulfonate), inhibited adenosine diphosphate (ADP)-, 2-methylthioADP (2-MeSADP)-, U46619-, and low-dose thrombin-mediated platelet aggregation. However, the GIRK channel inhibitors did not affect platelet aggregation induced by high concentrations of thrombin, AYPGKF, or convulxin. Furthermore, the GIRK channel inhibitors reversed SFLLRN-induced platelet aggregation, inhibited the P2Y(12)-mediated potentiation of dense granule secretion and Akt phosphorylation, and did not affect the agonist-induced G(q)-mediated platelet shape change and intracellular calcium mobilization. Unlike AR-C 69931MX, a P2Y(12) receptor-selective antagonist, the GIRK channel blockers did not affect the ADP-induced adenlylyl cyclase inhibition, indicating that they do not directly antagonize the P2Y(12) receptor. We conclude that GIRK channels are important functional effectors of the P2Y(12) receptor in human platelets.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Plaquetas/metabolismo , Proteínas de la Membrana/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Receptores Purinérgicos P2/metabolismo , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Adenosina Difosfato/farmacología , Animales , Antihipertensivos/farmacología , Benzazepinas/farmacología , Western Blotting , Gránulos Citoplasmáticos/metabolismo , Antagonistas de Dopamina/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Ratones , Fragmentos de Péptidos/farmacología , Fosforilación , Agregación Plaquetaria/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Receptores Purinérgicos P2Y12 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tionucleótidos/farmacología
13.
J Biol Chem ; 279(4): 2360-7, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14578358

RESUMEN

Several platelet agonists, including thrombin, collagen, and thromboxane A(2), cause dense granule release independently of thromboxane generation. Because protein kinase C (PKC) isoforms are implicated in platelet secretion, we investigated the role of individual PKC isoforms in platelet dense granule release. PKCdelta was phosphorylated in a time-dependent manner that coincided with dense granule release in response to protease-activated receptor-activating peptides SFLLRN and AYPGKF in human platelets. Only agonists that caused platelet dense granule secretion activated PKCdelta. SFLLRN- or AYPGKF-induced dense granule release and PKCdelta phosphorylation occurred at the same respective agonist concentration. Furthermore, AYPGKF and SFLLRN-induced dense granule release was blocked by rottlerin, a PKCdelta selective inhibitor. In contrast, convulxin-induced dense granule secretion was potentiated by rottlerin but was abolished by Go6976, a classical PKC isoform inhibitor. However, SFLLRN-induced dense granule release was unaffected in the presence of Go6976. Finally, rottlerin did not affect SFLLRN-induced platelet aggregation, even in the presence of dimethyl-BAPTA, indicating that PKCdelta has no role in platelet fibrinogen receptor activation. We conclude that PKCdelta and the classical PKC isoforms play a differential role in platelet dense granule release mediated by protease-activated receptors and glycoprotein VI. Furthermore, PKCdelta plays a positive role in protease-activated receptor-mediated dense granule secretion, whereas it functions as a negative regulator downstream of glycoprotein VI signaling.


Asunto(s)
Plaquetas/fisiología , Degranulación de la Célula/fisiología , Proteína Quinasa C/fisiología , Degranulación de la Célula/efectos de los fármacos , Humanos , Isoenzimas/efectos de los fármacos , Isoenzimas/fisiología , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Fosforilación/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/fisiología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C-delta , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/fisiología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA