Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cell Rep ; 36(1): 109326, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233197

RESUMEN

Coordination between cell differentiation and proliferation during development requires the balance between asymmetric and symmetric modes of cell division. However, the cellular intrinsic cue underlying the choice between these two division modes remains elusive. Here, we show evidence in Caenorhabditis elegans that the invariable lineage of the division modes is specified by the balance between antagonizing complexes of partitioning-defective (PAR) proteins. By uncoupling unequal inheritance of PAR proteins from that of fate determinants during cell division, we demonstrate that changes in the balance between PAR-2 and PAR-6 can be sufficient to re-program the division modes from symmetric to asymmetric and vice versa in two daughter cells. The division mode adopted occurs independently of asymmetry in cytoplasmic fate determinants, cell-size asymmetry, and cell-cycle asynchrony between sister cells. We propose that the balance between PAR proteins represents an intrinsic self-organizing cue for the specification of the two division modes during development.


Asunto(s)
División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Embrión no Mamífero/citología , Desarrollo Embrionario , Animales , Linaje de la Célula , Polaridad Celular , Simulación por Computador , Embrión no Mamífero/metabolismo , Modelos Biológicos , Cigoto/citología , Cigoto/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-32268538

RESUMEN

Chronic exposure to groundwater containing elevated concentrations of geogenic contaminants such as arsenic (As) and uranium (U) can lead to detrimental health impacts. In this study, we have undertaken a groundwater survey of representative sites across all districts of the State of Bihar, in the Middle Gangetic Plain of north-eastern India. The aim is to characterize the inorganic major and trace element aqueous geochemistry in groundwater sources widely used for drinking in Bihar, with a particular focus on the spatial distribution and associated geochemical controls on groundwater As and U. Concentrations of As and U are highly heterogeneous across Bihar, exceeding (provisional) guideline values in ~16% and 7% of samples (n = 273), respectively. The strongly inverse correlation between As and U is consistent with the contrasting redox controls on As and U mobility. High As is associated with Fe, Mn, lower Eh and is depth-dependent; in contrast, high U is associated with HCO3-, NO3- and higher Eh. The improved understanding of the distribution and geochemical controls on As and U in Bihar has important implications on remediation priorities and selection, and may contribute to informing further monitoring and/or representative characterization efforts in Bihar and elsewhere in India.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Uranio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , India
3.
PLoS One ; 10(8): e0136095, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26305221

RESUMEN

Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.


Asunto(s)
Adaptación Fisiológica , Modelos Teóricos , Ruido , Algoritmos , Amoeba , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA