RESUMEN
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Asunto(s)
Virus ARN , Garrapatas , Virus , Animales , Virus ARN/genética , Genoma Viral/genética , ARNRESUMEN
Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.
Asunto(s)
Ixodes , Rickettsia , Enfermedades por Picaduras de Garrapatas , Animales , China/epidemiología , Filogenia , Prevalencia , Rickettsia/genética , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinariaRESUMEN
Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.