Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Agric Food Chem ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906428

RESUMEN

In the protracted "arms race" between host and plant pathogenic bacteria, host organisms have evolved powerful weapons known as host defense peptides (HDPs). However, natural HDPs are not suitable for large-scale applications; therefore, researchers have chosen to develop bespoke small-molecule functional mimics. Phenothiazine derivatives were developed as functional HDPs mimics, owing to their broad biological activity and high lipophilicity. The phenothiazine analogues designed in this study exhibited excellent in vitro bioactivity against the three Gram-negative bacteria Xanthomonas oryzae pv oryzae, Xanthomonas axonopodis pv citri, and Pseudomonas syringae pv actinidiae, with optimal EC50 values of 0.80, 0.31, and 1.91 µg/mL, respectively. Preliminary evidence suggests that compound C2 may act on bacterial cell membranes and interact with bacterial Deoxyribonucleic acid in the groove binding mode. In vivo trials showed that compound C2 was highly effective against rice leaf blight (51.97-56.69%), with activity superior to those of bismerthiazol (40.7-43.4%) and thiodiazole copper (30.2-37.1%). Our study provides strong evidence to support the development of phenothiazine derivatives into pesticide candidates.

2.
Pest Manag Sci ; 79(11): 4231-4243, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37345486

RESUMEN

BACKGROUND: Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS: Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 µg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 µg/mL) and ribavirin (557.47 µg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION: In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.

3.
J Agric Food Chem ; 71(14): 5463-5475, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37012216

RESUMEN

The discovery of natural product-based pesticides is critical for agriculture. In this work, a series of novel tricyclic diterpenoid derivatives decorated with an amino alcohol moiety were elaborately prepared from natural abietic acid, and their antibacterial behavior was explored. Bioassay results indicated that compound C2 exhibited the most promising bioactivity (EC50 = 0.555 µg mL-1) against Xanthomonas oryzae pv. oryzae (Xoo), about 73 times higher than the effect of commercial thiodiazole copper (TC). Results of in vivo bioassays showed that compound C2 displayed significantly higher control of rice bacterial leaf blight (curative activity: 63.8%; protective activity: 58.4%) than TC (curative activity: 43.6%; protective activity: 40.8%), and their bioactivity could be improved maximally 16% by supplementing the auxiliaries. Antibacterial behavior suggested that compound C2 could suppress various virulence factors. Overall, these findings suggested that new botanical bactericide candidates could control intractable plant bacterial diseases by suppressing virulence factors.


Asunto(s)
Antibacterianos , Oxadiazoles , Pruebas de Sensibilidad Microbiana , Factores de Virulencia , Manejo de la Enfermedad
4.
J Agric Food Chem ; 71(17): 6603-6616, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083434

RESUMEN

Anti-infection strategies based on suppression of bacterial virulence factors represent a crucial direction for the development of new antibacterial agents to address the resistance triggered by traditional drugs'/pesticides' bactericidal activity. To identify and obtain more effective and diverse molecules targeting virulence, we prepared a series of 3-hydroxy-2-methyl-1-pyridin-4-(1H)-one derivatives and evaluated their antibacterial behaviors. Compound B6 exhibited the highest bioactivity, with half-maximal effective concentration (EC50) values ranging fro9m 10.03 to 30.16 µg mL-1 against three plant pathogenic bacteria. The antibacterial mechanism showed that it could considerably reduce various virulence factors (such as extracellular enzymes, biofilm, and T3SS effectors) and inhibit the expression of virulence factor-related genes. In addition, the control efficiency of compound B6 against rice bacterial leaf blight at 200 µg mL-1 was 46.15-49.15%, and their control efficiency was improved by approximately 12% after the addition of pesticide additives. Thus, a new class of bactericidal candidates targeting bacterial virulence factors was developed for controlling plant bacterial diseases.


Asunto(s)
Oryza , Plaguicidas , Xanthomonas , Enfermedades de las Plantas/microbiología , Antibacterianos/farmacología , Plaguicidas/farmacología , Oryza/microbiología , Factores de Virulencia/genética , Pruebas de Sensibilidad Microbiana
5.
J Agric Food Chem ; 71(6): 2804-2816, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744848

RESUMEN

Discovering new anti-virulent agents to control plant bacterial diseases by preventing bacterial pathogenesis/pathogenicity rather than affecting bacterial growth is a sensible strategy. However, the effects of compound-manipulated bacterial virulence factors on host response are still not clear. In this work, 35 new 1,3,4-oxadiazole derivatives were synthesized and systematically evaluated for their anti-phytopathogenic activities. Bioassay results revealed that compound C7 possessed outstanding antibacterial activity in vitro (half-maximal effective concentration: 0.80 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo) and acceptable bioactivity in vivo toward rice bacterial leaf blight. Furthermore, virulence factor-related biochemical assays showed that C7 was a promising anti-virulent agent. Interestingly, C7 could indirectly reduce the inducible expression of host SWEET genes and thereby alleviate nutrient supply in the infection process of phytopathogenic bacteria. Our results highlight the potential of 1,3,4-oxadiazole-based agrochemicals for manipulating type III secretion system-induced phytopathogenic bacteria starvation mechanisms to prevent plant bacterial diseases.


Asunto(s)
Infecciones Bacterianas , Oryza , Xanthomonas , Sistemas de Secreción Tipo III/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Oxadiazoles/farmacología , Oxadiazoles/química , Factores de Virulencia/metabolismo , Xanthomonas/genética , Oryza/metabolismo , Antibacterianos/química
6.
J Agric Food Chem ; 70(26): 7929-7940, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731909

RESUMEN

Plant viral diseases cause the loss of millions of dollars to agriculture around the world annually. Therefore, the development of highly efficient, ultra-low-dosage agrochemicals is desirable for protecting the health of crops and ensuring food security. Herein, a series of 1,3,4-oxadiazole derivatives bearing an isopropanol amine moiety was prepared, and the inhibitory activity against tobacco mosaic virus (TMV) was assessed. Notably, compound A14 exhibited excellent anti-TMV protective activity with an EC50 value of 137.7 mg L-1, which was superior to that of ribavirin (590.0 mg L-1) and ningnanmycin (248.2 mg L-1). Moreover, the anti-TMV activity of some compounds could be further enhanced (by up to 5-30%) through supplementation with 0.1% auxiliaries. Biochemical assays suggested that compound A14 could suppress the biosynthesis of TMV and induce the plant's defense response. Given these merits, designed compounds had outstanding bioactivities and unusual action mechanisms and were promising candidates for controlling plant viral diseases.


Asunto(s)
Virus del Mosaico del Tabaco , Virosis , Antivirales/química , Diseño de Fármacos , Humanos , Oxadiazoles , Enfermedades de las Plantas/prevención & control , Relación Estructura-Actividad
7.
J Agric Food Chem ; 70(16): 4899-4911, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35437986

RESUMEN

Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 µg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.


Asunto(s)
Infecciones Bacterianas , Oryza , Xanthomonas , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Propanolaminas , Estilbenos
8.
J Agric Food Chem ; 70(9): 2825-2838, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35201749

RESUMEN

To unceasingly expand the molecular diversity of 1,3,4-oxadiazole-2-carbohydrazides, herein, small fragments (including -CH2-, -OCH2-, and -SCH2-) were incorporated into the target compounds to screen out the potential succinate dehydrogenase inhibitors (SDHIs). The bioassay results showed that the antifungal effects (expressed by EC50) against Sclerotinia sclerotiorum, Botryosphaeria dothidea, Fusarium oxysporum, and Colletotrichun higginsianum could reach 1.29 (10a), 0.63 (8h), 1.50 (10i), and 2.09 (10i) µg/mL, respectively, which were slightly lower than those of carbendazim (EC50 were 0.69, 0.13, 0.55, and 0.80 µg/mL, respectively). Especially, compound 10h was extremely bioactive against Gibberella zeae (G. z.) with an EC50 value of 0.45 µg/mL. This outcome was better than that of fluopyram (3.76 µg/mL) and was similar to prochloraz (0.47 µg/mL). In vivo trials against the corn scab (infected by G. z.) showed that compound 10h had control activity of 86.8% at 200 µg/mL, which was better than that of boscalid (79.6%). Further investigations found that compound 10h could inhibit the enzymatic activity of SDH in the G. z. strain with an IC50 value of 3.67 µM, indicating that potential SDHIs might be developed. Additionally, the other biological activities of these molecules were screened simultaneously. The anti-oomycete activity toward Phytophthora infestans afforded a minimal EC50 value of 3.22 µg/mL (10h); compound 4d could strongly suppress the growth of bacterial strains Xanthomonas axonopodis pv. citri and Xanthomonas oryzae pv. oryzae with EC50 values of 3.79 and 11.4 µg/mL, respectively; and compound 10a displayed some insecticidal activity toward Plutella xylostella. Given their multipurpose features, these frameworks could be actively studied as potential pesticide leads.


Asunto(s)
Phytophthora infestans , Xanthomonas , Antibacterianos/farmacología , Hidrazinas , Pruebas de Sensibilidad Microbiana , Oxadiazoles/farmacología , Enfermedades de las Plantas , Relación Estructura-Actividad
9.
J Agric Food Chem ; 69(50): 15108-15122, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34905356

RESUMEN

Targeting the virulence factors of phytopathogenic bacteria is an innovative strategy for alleviating or eliminating the pathogenicity and rapid outbreak of plant microbial diseases. Therefore, several types of 1,2,4-triazole thioethers bearing an amide linkage were prepared and screened to develop virulence factor inhibitors. Besides, the 1,2,4-triazole scaffold was exchanged by a versatile 1,3,4-oxadiazole core to expand molecular diversity. Bioassay results revealed that a 1,2,4-triazole thioether A10 bearing a privileged N-(3-nitrophenyl)acetamide fragment was extremely bioactive against Xanthomonas oryzae pv. oryzae (Xoo) with an EC50 value of 5.01 µg/mL. Label-free quantitative proteomics found that compound A10 could significantly downregulate the expression of Xoo's type III secretion system (T3SS) and transcription activator-like effector (TALE) correlative proteins. Meanwhile, qRT-PCR detection revealed that the corresponding gene transcription levels of these virulence factor-associated proteins were substantially inhibited after being triggered by compound A10. As a result, the hypersensitive response and pathogenicity were strongly depressed, indicating that a novel virulence factor inhibitor (A10) was probably discovered. In vivo anti-Xoo trials displayed that compound A10 yielded practicable control efficiency (54.2-59.6%), which was superior to thiadiazole-copper and bismerthiazol (38.1-44.9%). Additionally, compound A10 showed an appreciable antiviral activity toward tobacco mosaic virus (TMV) with the curative and protective activities of 54.6 and 76.4%, respectively, which were comparable to ningnanmycin (55.2 and 60.9%). This effect was further validated and visualized by the inoculation test using GFP-labeled TMV, thereby leading to the reduced biosynthesis of green-fluorescent TMV on Nicotiana benthamiana. Given the outstanding features of compound A10, it should be deeply developed as a versatile agricultural chemical.


Asunto(s)
Infecciones Bacterianas , Oryza , Virus del Mosaico del Tabaco , Xanthomonas , Antibacterianos/farmacología , Antivirales/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas , Sulfuros , Triazoles , Factores de Virulencia/genética
10.
J Agric Food Chem ; 69(30): 8380-8393, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296859

RESUMEN

Developing multipurpose agricultural chemicals is appealing in crop protection, thus eventually realizing the reduction and efficient usage of pesticides. Herein, an array of versatile pyrazole hydrazide derivatives bearing a 1,3,4-oxadiazole core were initially synthesized and biologically evaluated the antifungal, antioomycetes, and antibacterial activities. In addition, the pyrazole ring was replaced by the correlative pyrrole, thiazole, and indole scaffolds to extend the molecular diversity. The results showed that most of these hybrid compounds were empowered with multifunctional bioactivities, which are exemplified by compounds a1-a6, b1-b3, b7, b10, b13, and b18. For the antifungal activity, the minimal EC50 values could afford 0.47 (a2), 1.05 (a2), 0.65 (a1), and 1.32 µg/mL (b3) against the corresponding fungi Gibberella zeae (G. z.), Fusarium oxysporum, Botryosphaeria dothidea, and Rhizoctonia solani. In vivo pot experiments against corn scab (caused by G. z.) revealed that the compound a2 was effective with protective and curative activities of 90.2 and 86.3% at 200 µg/mL, which was comparable to those of fungicides boscalid and fluopyram. Further molecular docking study and enzymatic activity analysis (IC50 = 3.21 µM, a2) indicated that target compounds were promising succinate dehydrogenase inhibitors. Additionally, compounds b2 and a4 yielded superior anti-oomycete and antibacterial activities toward Phytophora infestins and Xanthomonas oryzae pv. oryzae with EC50 values of 2.92 and 8.43 µg/mL, respectively. In vivo trials against rice bacterial blight provided the control efficiency within 51.2-55.3% (a4) at 200 µg/mL, which were better than that of bismerthiazol. Given their multipurpose characteristics, these structures should be positively explored as agricultural chemicals.


Asunto(s)
Infecciones Bacterianas , Oomicetos , Xanthomonas , Agroquímicos , Antibacterianos/farmacología , Ascomicetos , Fusarium , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oxadiazoles , Enfermedades de las Plantas , Pirazoles/farmacología , Rhizoctonia , Relación Estructura-Actividad
11.
J Agric Food Chem ; 68(31): 8132-8142, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32649185

RESUMEN

Xanthomonas oryzae pv. oryzae (Xoo) is an offensive phytopathogen that can invade a wide range of plant hosts to develop bacterial diseases, including the well-known rice bacterial leaf blight. However, few agrochemicals have been identified to effectively prevent and eliminate Xoo-induced diseases. Thus, designing novel antibacterial compounds on the basis of the potential targets from Xoo may lead to the discovery of highly efficient and innovative anti-Xoo agents. Filamentous temperature-sensitive protein Z (FtsZ), an important functional protein in the progression of cell division, has been widely reported and exploited as a target for creating antibacterial drugs in the field of medicine. Therefore, the fabrication of innovative frameworks targeting XooFtsZ may be an effective method for managing bacterial leaf blight diseases via blocking the binary division and reproduction of Xoo. As such, a series of novel N-(cinnamoyl)-N'-(substituted)acryloyl hydrazide derivatives containing pyridinium moieties were designed, and the anti-Xoo activity was determined. The bioassay results showed that compound A7 had excellent anti-Xoo activity (EC50 = 0.99 mg L-1) in vitro and distinct curative activity (63.2% at 200 mg L-1) in vivo. Further studies revealed that these designed compounds were XooFtsZ inhibitors, validating by the reduced GTPase activity of recombinant XooFtsZ, the nonfilamentous XooFtsZ assembly observed in the TEM images, and the prolonged Xoo cells from the fluorescence patterns. Computational docking studies showed that compound A7 had strong interactions with ASN34, GLN193, and GLN197 residues located in the α helix regions of XooFtsZ. The present study demonstrates the developed FtsZ inhibitors can serve as agents to control Xoo-induced infections.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/efectos de los fármacos , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Piridazinas/química , Piridazinas/farmacología , Temperatura , Xanthomonas/genética , Xanthomonas/fisiología
12.
Bioorg Med Chem Lett ; 30(4): 126912, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31882301

RESUMEN

In this letter, a variety of simple 6-chloro-4-(4-substituted piperazinyl)quinazoline derivatives was prepared. Preliminary bioassays revealed that these compounds showed good antibacterial activities toward phytopathogens Ralstonia solanacearum and Xanthomonas oryzae pv. oryzae (Xoo). Among these derivatives, compounds 5a, 5d, 5e, 5f, 5p, 5q, 6b, and 6d exhibited potent inhibition effects against R. solanacearum with EC50 within 4.60-9.94 µg/mL, especially, compound 5g exerted the strongest activity with EC50 of 2.72 µg/mL; compound 6b possessed the best inhibitory activity toward Xoo with EC50 of 8.46 µg/mL. Subsequently, a good predictive three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed via CoMFA to direct the future structural modification and optimization. Furthermore, the pathogens' topological studies were performed to explore the possible antibacterial mechanism. Given their simple frameworks and facile synthesis, title compounds can serve as the potential antibacterial leads.


Asunto(s)
Antibacterianos/farmacología , Quinazolinas/química , Ralstonia solanacearum/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad Cuantitativa , Quinazolinas/síntesis química , Quinazolinas/farmacología
13.
J Agric Food Chem ; 67(50): 13892-13903, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31774673

RESUMEN

A novel simple 1,3,4-oxadiazole-2-carbohydrazide was reported to discover low-cost and versatile antifungal agents. Bioassay results suggested that a majority of the designed compounds were extremely bioactive against four types of fungi and two kinds of oomycetes. This extreme bioactivity was highlighted by the applausive inhibitory effects of compounds 4b, 4h, 5c, 5g, 5h, 5i, 5m, 5p, 5t, and 5v against Gibberella zeae, affording EC50 values ranging from 0.486 to 0.799 µg/mL, which were superior to that of fluopyram (2.96 µg/mL) and comparable to those of carbendazim (0.947 µg/mL) and prochloraz (0.570 µg/mL). Meanwhile, compounds 4g, 5f, 5i, and 5t showed significant actions against Fusarium oxysporum with EC50 values of 0.652, 0.706, 0.813, and 0.925 µg/mL, respectively. Pharmacophore exploration suggested that the N'-phenyl-1,3,4-oxadiazole-2-carbohydrazide pattern is necessary for the bioactivity. Molecular docking of 5h with succinate dehydrogenase (SDH) indicated that it can completely locate the inside of the binding pocket via hydrogen-bonding and hydrophobic interactions, revealing that this novel framework might target SDH. This result was further verified by the significant inhibitory effect on SDH activity. In addition, scanning electron microscopy patterns were performed to elucidate the anti-G. zeae mechanism. Given these features, this type of framework is a suitable template for future exploration of alternative SDH inhibitors against plant microbial infections.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Fungicidas Industriales/química , Hidrazinas/química , Oxadiazoles/química , Succinato Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/química , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Fusarium/enzimología , Hidrazinas/farmacología , Simulación del Acoplamiento Molecular , Oxadiazoles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Relación Estructura-Actividad , Succinato Deshidrogenasa/química
14.
Bioorg Med Chem Lett ; 28(10): 1742-1746, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29680667

RESUMEN

A type of pyridinium-decorated 1,4-pentadien-3-one derivatives possessing flexible alkyls were designed and synthesized by integrating the key scaffolds of pyridinium cations and 1,4-pentadien-3-one skeleton in a single molecular architecture. Antimicrobial bioassays indicated that some of the target molecules exerted considerable bioactivities against six phytopathogenic strains, especially for Xanthomonas oryzae pv. oryzae, the minimal EC50 value can reach to 0.504 µg/mL. A plausible action mechanism for this kind of compounds was proposed and confirmed by employing fluorescent spectroscopy, fluorescence microscopy, and scanning electron microscopy. We anticipated that this finding can promote high-efficient lead compounds discovery in the research of antimicrobial chemotherapy.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
15.
Bioorg Med Chem Lett ; 27(18): 4294-4297, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28843708

RESUMEN

Various pyridinium-functionalized carbazole derivatives were constructed by coupling the key fragments of carbazole skeleton and pyridinium nucleus in a single molecular architecture. Antibacterial bioassays revealed that some of the title compounds displayed impressive bioactivities against plant pathogens such as Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri with minimal EC50 values of up to 0.4, 0.3, and 0.3mg/L, respectively. These bioactivities were achieved by systematically tuning and optimizing bridging linker, alkyl length of the tailor, and substituents on the carbazole scaffold. Compared with the bioactivity of the lead compound (AP-10), antibacterial efficacy dramatically increased by approximately 13-, 104- and 21-fold. This finding suggested that these compounds can serve as new lead compounds in research on antibacterial chemotherapy.


Asunto(s)
Antibacterianos/farmacología , Carbazoles/farmacología , Compuestos de Piridinio/farmacología , Ralstonia solanacearum/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Carbazoles/síntesis química , Carbazoles/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos de Piridinio/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA