Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145990

RESUMEN

Novel approaches for pest control are essential to ensure a sufficient food supply for the growing global population. The development of new insecticides must meet rigorous regulatory requirements for safety and address the resistance issues of existing insecticides. Proteolysis-targeting chimeras (PROTACs), originally developed for human diseases, show promise in agriculture. They offer innovative insecticides tailored to overcome resistance, opening avenues for agricultural applications. In this study, we developed small-molecule degraders by incorporating pomalidomide as an E3 ligand. These degraders were linked to a ligand (spirotetratmat enol) targeting the ACC protein through a flexible chain, aiming to achieve the efficient control of insects. Compounds 9a-9d were designed, synthesized, and evaluated for biological activities and mechanisms. Among them, 9b exhibited superior potency against Aphis craccivora (LC50 = 107.8 µg mL-1) compared to others and effectively degraded ACC proteins through the ubiquitin-proteasome system. These findings highlight the potential of utilizing PROTAC-based approaches in the development of insecticides for efficient pest control.

2.
J Agric Food Chem ; 72(29): 16112-16127, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985656

RESUMEN

The active splicing strategy has witnessed improvement in bioactivity and antifungal spectra in pesticide discovery. Herein, a series of simple-structured molecules (Y1-Y53) containing chloro-substituted benzyl esters were designed using the above strategy. The structure-activity relationship (SAR) analysis demonstrated that the fatty acid fragment-structured esters were more effective than those containing an aromatic acid moiety or naphthenic acid part. Compounds Y36 and Y41, which featured a thiazole-4-acid moiety and trifluoromethyl aliphatic acid part, respectively, exhibited excellent in vivo curative activity (89.4%, 100 mg/L Y36) and in vitro fungicidal activity (EC50 = 0.708 mg/L, Y41) against Botrytis cinerea. Determination of antifungal spectra and analysis of scanning electron microscopy (SEM), membrane permeability, cell peroxidation, ergosterol content, oxalic acid pathways, and enzymatic assays were performed separately here. Compound Y41 is cost effective due to its simple structure and shows promise as a disease control candidate. In addition, Y41 might act on a novel target through a new pathway that disrupts the cell membrane integrity by inducing cell peroxidation.


Asunto(s)
Botrytis , Diseño de Fármacos , Ésteres , Fungicidas Industriales , Ésteres/química , Ésteres/farmacología , Relación Estructura-Actividad , Botrytis/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Estructura Molecular , Enfermedades de las Plantas/microbiología , Pruebas de Sensibilidad Microbiana
3.
Pest Manag Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940289

RESUMEN

BACKGROUND: Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS: Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole ß-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 µg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 µg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 µm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION: The identified ß-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.

4.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771932

RESUMEN

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Asunto(s)
Aedes , Compuestos Azo , Insecticidas , Neonicotinoides , Nitrocompuestos , Pirazoles , Animales , Nitrocompuestos/química , Nitrocompuestos/farmacología , Insecticidas/química , Insecticidas/farmacología , Compuestos Azo/química , Compuestos Azo/farmacología , Neonicotinoides/química , Neonicotinoides/farmacología , Pirazoles/química , Pirazoles/farmacología , Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Conducta Animal/efectos de los fármacos , Luz , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/química
5.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757770

RESUMEN

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Asunto(s)
Aedes , Diseño de Fármacos , Moscas Domésticas , Insecticidas , Simulación del Acoplamiento Molecular , Pirazoles , Animales , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Aedes/efectos de los fármacos , Aedes/crecimiento & desarrollo , Relación Estructura-Actividad , Moscas Domésticas/efectos de los fármacos , Moscas Domésticas/crecimiento & desarrollo , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Estructura Molecular , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Pez Cebra/embriología
6.
Pest Manag Sci ; 80(9): 4523-4532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747159

RESUMEN

BACKGROUND: Whiteflies are major pests in agriculture, causing damage to crops and transmitting plant viruses. Using Volatile Organic Compounds (VOCs) as semiochemicals offers a sustainable approach for combating whiteflies. One such group of compounds, represented by ß-ionone, has been found to possess repellent/attractant properties. To further explore the behavioral effects of these compounds on whiteflies, we selected five natural ionone compounds and synthesized six novel analogues to examine the impact of structural variations on whitefly behavior. RESULTS: Our results demonstrated that ß-ionone and its analogues have a significant impact on the behavior of whiteflies. Among them, 0.01% pseudo ionone solution exhibited an attractant effect on whiteflies. Notably, the application of 1% ß-ionone and 0.1% ß-ionol solution demonstrated a notable repellent effect and oviposition deterrent effect on whitefly. We also found that the novel ionone analogue (±)1A exhibited a strong repellent effect. Both ß-ionol and compound (±)1A possess high logP values and low saturation vapor pressures, which contribute to enhanced lipophilicity, making them more likely to penetrate insect antennae and prolong their presence in the air. CONCLUSION: The newly discovered ionone analogue (±)1A and ß-ionol exhibit improved repellent effects, while pseudo ionone shows an attractant effect. These three compounds hold promising potential for development as novel biological control agents. Our work highlights the efficacy of VOCs as a protection method against whiteflies. These findings indicate that our new technology for a 'push-pull' control method of B. tabaci can offer a novel tool for integrated pest management (IPM). © 2024 Society of Chemical Industry.


Asunto(s)
Hemípteros , Norisoprenoides , Animales , Hemípteros/efectos de los fármacos , Hemípteros/fisiología , Norisoprenoides/farmacología , Norisoprenoides/química , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Femenino , Control de Insectos/métodos , Conducta Animal/efectos de los fármacos , Oviposición/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química
7.
Photochem Photobiol ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445797

RESUMEN

Pesticides can improve crops' yield and quality, but unreasonable applications of pesticides lead to waste of pesticides which are further accumulated in the environment and threaten human health. Developing the release of controlled drugs can improve the utilization rate of pesticides. Among these methods, light-controlled release is a new technology of controlled release, which can realize spatiotemporal delivery of drugs by light. Four compounds, named Imidacloprid-Thioacetal o-nitrobenzyl-Phenamacril (IMI-TNB-PHE), Imidacloprid-Thioacetal o-nitrobenzyl- Imidacloprid (IMI-TNB-IMI), Phenamacril-Thioacetal o-nitrobenzyl-Phenamacril (PHE-TNB-PHE), and Imidacloprid-Thioacetal o-nitrobenzyl-Imidacloprid Synergist (IMI-TNB-IMISYN), were designed and synthesized by connecting thioacetal o-nitrobenzyl (TNB) with pesticides TNB displaying simple and efficient optical properties in this work. Dual photo-controlled release of pesticides including two molecules of IMI or PHE, both IMI and PHE, as well as IMI and IMISYN were, respectively, studied in this paper. Insecticidal/fungicidal activities of the photosensitive pesticides showed 2-4 times increments if they were exposed to light. In addition, a synergistic effect was observed after the light-controlled release of IMI-TNB-IMISYN, which was consistent with the effect of IMISYN. The results demonstrated whether dual photo-controlled release of the same or different pesticide molecules could be achieved with a TNB linker with spatiotemporal precision. We envisioned that TNB will be an innovative photosensitive protective group for light-dependent application of agrochemicals in the future.

8.
Chembiochem ; 25(7): e202300742, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38426686

RESUMEN

Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both in vitro and in vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.


Asunto(s)
Plaguicidas , Tiabendazol , Tiabendazol/farmacología , Tiabendazol/análisis , Preparaciones de Acción Retardada , Antifúngicos/farmacología
9.
Pest Manag Sci ; 80(6): 2773-2784, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38298140

RESUMEN

BACKGROUND: Pheromones have unique advantages for pest control. Current aphid pheromone research focuses on alarm and sex pheromones. However, practical applications are limited so far, as (E)-ß-farnesene has only been investigated to a small extent as an alarm pheromone and only male aphids are targeted by sex pheromones. Previous literature reports electrophysiological responses and repellent behavior of asexual aphids to nepetalactone (1B), therefore our objective was to modify nepetalactone's structure to identify key fragments responsible for repellent effects, as guidance for subsequent modifications and further investigation. RESULTS: In this study, seven derivatives were designed and synthesized based on nepetalactol (1A) and nepetalactone (1B) as lead compounds. Free-choice tests, conducted using cowpea aphids (Aphis craccivora), revealed that the lactone moiety was crucial for the repellent activity, and the removal of the carbonyl group eliminated the repelling effect. Compound (±)1I, an analogue of nepetalactone (1B), demonstrated a significantly higher repellent value than nepetalactone (1B) at three different concentrations, and even at 0.1 mg/mL it maintained a considerable repellent effect (26.5%). Electrostatic potential and density functional theory calculations supported the importance of the carbonyl group for the repellent effects. CONCLUSION: The newly discovered para-pheromone (±)1I shows improved repellent effects and potential for development as a novel biological control agent. Based on our innovative findings, analogues with improved efficacy and properties can be designed and prepared. Our research contributes to understanding the effects of structural modifications on pheromone activity and properties, which is crucial for exploring novel pheromone-based products for crop protection. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Feromonas , Animales , Áfidos/efectos de los fármacos , Feromonas/farmacología , Masculino , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Pironas/farmacología , Pironas/química , Lactonas/farmacología , Lactonas/química , Monoterpenos Ciclopentánicos , Femenino , Norbornanos/química , Norbornanos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes
10.
Org Lett ; 26(2): 508-513, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179928

RESUMEN

The enantioselective allylic alkylation of nitro ketene aminals with racemic allylic alcohols was realized by iridium/acid dual catalysis. An allyl group was installed on the α-position of nitro ketene aminals in a branched-selective manner in high efficiency with excellent enantioselectivities (93-99% ee). The protocol was applied to the late-stage modification of neonicotinoid insecticides, which directly furnished a novel neonicotinoid analogue with good insecticidal activity against Aphis craccivora (LC50 = 6.40 mg/L). On the basis of the control experiment, an aza-ene-type allylic alkylation reaction mechanism was proposed.

11.
Chem Biodivers ; 21(2): e202301412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147354

RESUMEN

Insecticide synergists are an effective approach to increase the control efficacy and reduce active ingredient usage. In order to explore neonicotinoid-specific synergists with novel scaffolds and higher potency, a series of eight-membered carbon bridged neonicotinoid derivatives were designed and synthesized in accordance with our previous research. The synergistic effects of the target compounds on neonicotinoids in Aphis craccivora were evaluated, and the structure-activity relationships were summarized. The results indicated that most of the target compounds exhibited significant synergistic effects on imidacloprid in A. craccivora at low concentrations. In particular, compound 1 at a concentration of 1 mg/L reduced the LC50 value of imidacloprid from 0.856 mg/L to 0.170 mg/L. Meanwhile, compound 1 also increased the insecticidal activity of most neonicotinoid insecticides belonging to the Insecticide Resistance Action Committee (IRAC) 4 A subgroup against A. craccivora. The present study might be meaningful for directing the design of neonicotinoid-specific synergists.


Asunto(s)
Áfidos , Insecticidas , Animales , Neonicotinoides/farmacología , Insecticidas/farmacología , Nitrocompuestos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA