Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Genet Metab ; 124(1): 82-86, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29550355

RESUMEN

N-glycanase deficiency (NGLY1 deficiency, NGLY1-CDDG), the first autosomal recessive congenital disorder of N-linked deglycosylation (CDDG), is caused by pathogenic variants in NGLY1. The majority of affected individuals have been identified using exome or genome sequencing. To date, no reliable, clinically available biomarkers have been identified. Urine oligosaccharide analysis was included as part of a routine evaluation for possible biomarkers in patients with confirmed NGLY1-CDDG. During the qualitative review of oligosaccharide profiles by an experienced laboratory director an abnormal analyte with a proposed structure of Neu5Ac1Hex1GlcNAc1-Asn was identified in NGLY1-CDDG patient urine samples. The same species has been observed in profiles from individuals affected with aspartylglucosaminuria, although the complete spectra are not identical. Additional studies using tandem mass spectrometry confirmed the analyte's structure. In addition to the known NGLY1-CDDG patients identified by this analysis, a single case was identified in a population referred for clinical testing who subsequently had a diagnosis of NGLY1-CDDG confirmed by molecular testing. Urine oligosaccharide screening by MALDI-TOF MS can identify individuals with NGLY1-CDDG. In addition, this potential biomarker might also be used to monitor the effectiveness of therapeutic options as they become available.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Oligosacáridos/orina , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Adolescente , Biomarcadores/orina , Niño , Preescolar , Trastornos Congénitos de Glicosilación/orina , Femenino , Humanos , Lactante , Masculino , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/aislamiento & purificación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/orina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Adulto Joven
2.
Lancet Glob Health ; 5(4): e458-e466, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28153514

RESUMEN

BACKGROUND: Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country's largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. METHODS: In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). FINDINGS: Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 - 24]) and absence of an evening meal (2·2 [1·2-4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3-18·8], without evening meal; OR 3·6 [1·1-11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 µg/g to 152·0 µg/g and MCPG ranged from 44·9 µg/g to 220·0 µg/g. INTERPRETATION: Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks. FUNDING: US Centers for Disease Control and Prevention.


Asunto(s)
Encefalopatía Aguda Febril/diagnóstico , Brotes de Enfermedades/estadística & datos numéricos , Frutas/toxicidad , Litchi/toxicidad , Síndromes de Neurotoxicidad/diagnóstico , Encefalopatía Aguda Febril/epidemiología , Encefalopatía Aguda Febril/etiología , Adolescente , Estudios de Casos y Controles , Niño , Ciclopropanos/análisis , Femenino , Glicina/análogos & derivados , Glicina/análisis , Humanos , Hipoglicinas/análisis , India , Masculino , Síndromes de Neurotoxicidad/epidemiología , Síndromes de Neurotoxicidad/etiología , Oportunidad Relativa
3.
J Diabetes Metab ; 5(4): 361, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25309812

RESUMEN

BACKGROUND: Carnitine Palmitoyl Transferase 1 (CPT1) is the rate-limiting enzyme governing long-chain fatty acid entry into mitochondria. CPT1 inhibitors have been developed and exhibited beneficial effects against type II diabetes in short-term preclinical animal studies. However, the long-term effects of treatment remain unclear and potential non-specific effects of these CPT1 inhibitors hamper in-depth understanding of the potential molecular mechanisms involved. METHODS: We investigated the effects of restricting the activity of the muscle isoform CPT1b in mice using heterozygous CPT1b deficient (Cpt1b+/-) and Wild Type (WT) mice fed with a High Fat Diet (HFD) for 22 weeks. Insulin sensitivity was assessed using Glucose Tolerance Test (GTT), insulin tolerance test and hyperinsulinemic euglycemic clamps. We also examined body weight/composition, tissue and systemic metabolism/energetic status, lipid profile, transcript analysis, and changes in insulin signaling pathways. RESULTS: We found that Cpt1b+/- mice were protected from HFD-induced insulin resistance compared to WT littermates. Cpt1b+/- mice exhibited elevated whole body glucose disposal rate and skeletal muscle glucose uptake. Furthermore, Cpt1b+/- skeletal muscle showed diminished ex vivo palmitate oxidative capacity by ~40% and augmented glucose oxidation capacity by ~50% without overt change in whole body energy metabolism. HFD feeding Cpt1b+/- but not WT mice exhibited well-maintained insulin signaling in skeletal muscle, heart, and liver. CONCLUSION: The present study on a genetic model of CPT1b restriction supports the concept that partial CPT1b inhibition is a potential therapeutic strategy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25580367

RESUMEN

BACKGROUND: Carnitine palmitoyltransferase 1 (CPT1) is the rate-limiting enzyme governing the entry of long-chain acyl-CoAs into mitochondria. Treatments with CPT1 inhibitors protect against insulin resistance in short-term preclinical animal studies. We recently reported that mice with muscle isoform CPT1b deficiency demonstrated improved insulin sensitivity when fed a High Fat-Diet (HFD) for up to 5 months. In this follow up study, we further investigated whether the insulin sensitizing effects of partial CPT1b deficiency could be maintained under a prolonged HFD feeding condition. METHODS: We investigated the effects of CPT1b deficiency on HFD-induced insulin resistance using heterozygous CPT1b deficient (Cpt1b+/-) mice compared with Wild Type (WT) mice fed a HFD for a prolonged period of time (7 months). We assessed insulin sensitivity using hyperinsulinemic-euglycemic clamps. We also examined body composition, skeletal muscle lipid profile, and changes in the insulin signaling pathways of skeletal muscle, liver, and adipose tissue. RESULTS: We found that Cpt1b+/- mice became severely insulin resistant after 7 months of HFD feeding. Cpt1b+/- mice exhibited a substantially reduced glucose infusion rate and skeletal muscle glucose uptake. While Cpt1b+/- mice maintained a slower weight gain with less fat mass than WT mice, accumulation of lipid intermediates became evident in the muscle of Cpt1b+/- but not WT mice after 7 months of HFD feeding. Insulin signaling was impaired in the Cpt1b+/- as compared to the WT muscles. CONCLUSION: Partial CPT1b deficiency, mimicking CPT1b inhibition, may lead to impaired insulin signaling and insulin sensitivity under a prolonged HFD feeding condition. Therefore, further studies on the potential detrimental effects of prolonged therapy with CPT1 inhibition are necessary in the development of this potential therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA