Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Circulation ; 148(19): 1459-1478, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37850387

RESUMEN

BACKGROUND: Interferon-γ (IFNγ) signaling plays a complex role in atherogenesis. IFNγ stimulation of macrophages permits in vitro exploration of proinflammatory mechanisms and the development of novel immune therapies. We hypothesized that the study of macrophage subpopulations could lead to anti-inflammatory interventions. METHODS: Primary human macrophages activated by IFNγ (M(IFNγ)) underwent analyses by single-cell RNA sequencing, time-course cell-cluster proteomics, metabolite consumption, immunoassays, and functional tests (phagocytic, efferocytotic, and chemotactic). RNA-sequencing data were analyzed in LINCS (Library of Integrated Network-Based Cellular Signatures) to identify compounds targeting M(IFNγ) subpopulations. The effect of compound BI-2536 was tested in human macrophages in vitro and in a murine model of atherosclerosis. RESULTS: Single-cell RNA sequencing identified 2 major clusters in M(IFNγ): inflammatory (M(IFNγ)i) and phagocytic (M(IFNγ)p). M(IFNγ)i had elevated expression of inflammatory chemokines and higher amino acid consumption compared with M(IFNγ)p. M(IFNγ)p were more phagocytotic and chemotactic with higher Krebs cycle activity and less glycolysis than M(IFNγ)i. Human carotid atherosclerotic plaques contained 2 such macrophage clusters. Bioinformatic LINCS analysis using our RNA-sequencing data identified BI-2536 as a potential compound to decrease the M(IFNγ)i subpopulation. BI-2536 in vitro decreased inflammatory chemokine expression and secretion in M(IFNγ) by shrinking the M(IFNγ)i subpopulation while expanding the M(IFNγ)p subpopulation. BI-2536 in vivo shifted the phenotype of macrophages, modulated inflammation, and decreased atherosclerosis and calcification. CONCLUSIONS: We characterized 2 clusters of macrophages in atherosclerosis and combined our cellular data with a cell-signature drug library to identify a novel compound that targets a subset of macrophages in atherosclerosis. Our approach is a precision medicine strategy to identify new drugs that target atherosclerosis and other inflammatory diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Redes Reguladoras de Genes , Macrófagos/metabolismo , Aterosclerosis/genética , Placa Aterosclerótica/metabolismo , ARN/metabolismo , Biología
2.
Circ Res ; 131(11): 873-889, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263780

RESUMEN

BACKGROUND: Activated macrophages contribute to the pathogenesis of vascular disease. Vein graft failure is a major clinical problem with limited therapeutic options. PCSK9 (proprotein convertase subtilisin/kexin 9) increases low-density lipoprotein (LDL)-cholesterol levels via LDL receptor (LDLR) degradation. The role of PCSK9 in macrophage activation and vein graft failure is largely unknown, especially through LDLR-independent mechanisms. This study aimed to explore a novel mechanism of macrophage activation and vein graft disease induced by circulating PCSK9 in an LDLR-independent fashion. METHODS: We used Ldlr-/- mice to examine the LDLR-independent roles of circulating PCSK9 in experimental vein grafts. Adeno-associated virus (AAV) vector encoding a gain-of-function mutant of PCSK9 (rAAV8/D377Y-mPCSK9) induced hepatic PCSK9 overproduction. To explore novel inflammatory targets of PCSK9, we used systems biology in Ldlr-/- mouse macrophages. RESULTS: In Ldlr-/- mice, AAV-PCSK9 increased circulating PCSK9, but did not change serum cholesterol and triglyceride levels. AAV-PCSK9 promoted vein graft lesion development when compared with control AAV. In vivo molecular imaging revealed that AAV-PCSK9 increased macrophage accumulation and matrix metalloproteinase activity associated with decreased fibrillar collagen, a molecular determinant of atherosclerotic plaque stability. AAV-PCSK9 induced mRNA expression of the pro-inflammatory mediators IL-1ß (interleukin-1 beta), TNFα (tumor necrosis factor alpha), and MCP-1 (monocyte chemoattractant protein-1) in peritoneal macrophages underpinned by an in vitro analysis of Ldlr-/- mouse macrophages stimulated with endotoxin-free recombinant PCSK9. A combination of unbiased global transcriptomics and new network-based hyperedge entanglement prediction analysis identified the NF-κB (nuclear factor-kappa B) signaling molecules, lectin-like oxidized LOX-1 (LDL receptor-1), and SDC4 (syndecan-4) as potential PCSK9 targets mediating pro-inflammatory responses in macrophages. CONCLUSIONS: Circulating PCSK9 induces macrophage activation and vein graft lesion development via LDLR-independent mechanisms. PCSK9 may be a potential target for pharmacologic treatment for this unmet medical need.


Asunto(s)
Activación de Macrófagos , Proproteína Convertasa 9 , Animales , Ratones , Colesterol , Lipoproteínas LDL/metabolismo , FN-kappa B , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Subtilisinas
3.
Respir Res ; 23(1): 69, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331221

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation. METHODS: In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein-protein interaction networks. RESULTS: We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways. CONCLUSIONS: The modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.


Asunto(s)
Mapas de Interacción de Proteínas , Enfermedad Pulmonar Obstructiva Crónica , Metilación de ADN , Femenino , Humanos , Pulmón/metabolismo , Embarazo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Fumar/efectos adversos , Fumar/genética
4.
Circulation ; 143(25): 2454-2470, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33821665

RESUMEN

BACKGROUND: Vein graft failure remains a common clinical challenge. We applied a systems approach in mouse experiments to discover therapeutic targets for vein graft failure. METHODS: Global proteomics and high-dimensional clustering on multiple vein graft tissues were used to identify potential pathogenic mechanisms. The PPARs (peroxisome proliferator-activated receptors) pathway served as an example to substantiate our discovery platform. In vivo mouse experiments with macrophage-targeted PPARα small interfering RNA, or the novel, selective activator pemafibrate demonstrate the role of PPARα in the development and inflammation of vein graft lesions. In vitro experiments further included metabolomic profiling, quantitative polymerase chain reaction, flow cytometry, metabolic assays, and single-cell RNA sequencing on primary human and mouse macrophages. RESULTS: We identified changes in the vein graft proteome associated with immune responses, lipid metabolism regulated by the PPARs, fatty acid metabolism, matrix remodeling, and hematopoietic cell mobilization. PPARα agonism by pemafibrate retarded the development and inflammation of vein graft lesions in mice, whereas gene silencing worsened plaque formation. Pemafibrate also suppressed arteriovenous fistula lesion development. Metabolomics/lipidomics, functional metabolic assays, and single-cell analysis of cultured human macrophages revealed that PPARα modulates macrophage glycolysis, citrate metabolism, mitochondrial membrane sphingolipid metabolism, and heterogeneity. CONCLUSIONS: This study explored potential drivers of vein graft inflammation and identified PPARα as a novel potential pharmacological treatment for this unmet medical need.


Asunto(s)
Macrófagos/metabolismo , PPAR alfa/metabolismo , Análisis de Sistemas , Injerto Vascular/métodos , Vena Cava Inferior/metabolismo , Vena Cava Inferior/trasplante , Animales , Supervivencia de Injerto/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica/métodos , Injerto Vascular/efectos adversos , Vena Cava Inferior/diagnóstico por imagen
6.
Nat Commun ; 11(1): 6398, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328473

RESUMEN

Asthma with severe exacerbation is the most common cause of hospitalization among young children. We aim to increase the understanding of this clinically important disease entity through a genome-wide association study. The discovery analysis comprises 2866 children experiencing severe asthma exacerbation between ages 2 and 6 years, and 65,415 non-asthmatic controls, and we replicate findings in 918 children from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) birth cohorts. We identify rs281379 near FUT2/MAMSTR on chromosome 19 as a novel risk locus (OR = 1.18 (95% CI = 1.11-1.25), Pdiscovery = 2.6 × 10-9) as well as a biologically plausible interaction between functional variants in FUT2 and ABO. We further discover and replicate a potential causal mechanism behind this interaction related to S. pneumoniae respiratory illnesses. These results suggest a novel mechanism of early childhood asthma and demonstrates the importance of phenotype-specificity for discovery of asthma genes and epistasis.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Asma/genética , Epistasis Genética , Fucosiltransferasas/genética , Infecciones Neumocócicas/genética , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Streptococcus pneumoniae/patogenicidad , Galactósido 2-alfa-L-Fucosiltransferasa
7.
Nat Commun ; 11(1): 6043, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247151

RESUMEN

Robustness is a prominent feature of most biological systems. Most previous related studies have been focused on homogeneous molecular networks. Here we propose a comprehensive framework for understanding how the interactions between genes, proteins and metabolites contribute to the determinants of robustness in a heterogeneous biological network. We integrate heterogeneous sources of data to construct a multilayer interaction network composed of a gene regulatory layer, a protein-protein interaction layer, and a metabolic layer. We design a simulated perturbation process to characterize the contribution of each gene to the overall system's robustness, and find that influential genes are enriched in essential and cancer genes. We show that the proposed mechanism predicts a higher vulnerability of the metabolic layer to perturbations applied to genes associated with metabolic diseases. Furthermore, we find that the real network is comparably or more robust than expected in multiple random realizations. Finally, we analytically derive the expected robustness of multilayer biological networks starting from the degree distributions within and between layers. These results provide insights into the non-trivial dynamics occurring in the cell after a genetic perturbation is applied, confirming the importance of including the coupling between different layers of interaction in models of complex biological systems.


Asunto(s)
Redes Reguladoras de Genes , Modelos Biológicos , Humanos , Enfermedades Metabólicas/genética , Redes y Vías Metabólicas , Neoplasias/genética , Análisis Numérico Asistido por Computador
8.
Indian J Cancer ; 57(1): 98-101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32129301

RESUMEN

Middle ear adenoma with neuroendocrine differentiation (MEA-ND) is also called as neuroendocrine adenoma. Neuroendocrine tumors are rarely seen in the head and neck region and are even more rare in the middle ear. Clinical and radiological findings are non-specific and seldom suggest this diagnosis. Nomenclature and behavior of this tumor has been historically controversial. Both epithelial as well as neuroendocrine origin have been suggested. They comprise <2% of all ear tumors and commonly present with unilateral hearing loss, aural fullness, and tinnitus. We present a case report of MEA-ND in a 24-year-old woman who presented with heaviness and tinnitus in the right ear.


Asunto(s)
Adenoma/diagnóstico , Neoplasias del Oído/diagnóstico , Tumores Neuroendocrinos/diagnóstico , Adenoma/patología , Adulto , Neoplasias del Oído/patología , Femenino , Humanos , Tumores Neuroendocrinos/patología , Adulto Joven
9.
Nat Commun ; 11(1): 811, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041952

RESUMEN

The molecular and clinical features of a complex disease can be influenced by other diseases affecting the same individual. Understanding disease-disease interactions is therefore crucial for revealing shared molecular mechanisms among diseases and designing effective treatments. Here we introduce Flow Centrality (FC), a network-based approach to identify the genes mediating the interaction between two diseases in a protein-protein interaction network. We focus on asthma and COPD, two chronic respiratory diseases that have been long hypothesized to share common genetic determinants and mechanisms. We show that FC highlights potential mediator genes between the two diseases, and observe similar outcomes when applying FC to 66 additional pairs of related diseases. Further, we perform in vitro perturbation experiments on a widely replicated asthma gene, GSDMB, showing that FC identifies candidate mediators of the interactions between GSDMB and COPD-associated genes. Our results indicate that FC predicts promising gene candidates for further study of disease-disease interactions.


Asunto(s)
Asma/genética , Predisposición Genética a la Enfermedad/genética , Mapas de Interacción de Proteínas/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Asma/complicaciones , Asma/metabolismo , Línea Celular , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Proteínas de Neoplasias/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Reproducibilidad de los Resultados
10.
Sci Rep ; 10(1): 966, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969610

RESUMEN

Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/genética , Bronquios/patología , Células Epiteliales/metabolismo , Expresión Génica , Estrés Mecánico , Células Epiteliales/patología , Humanos
11.
Front Physiol ; 10: 888, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379598

RESUMEN

Recently, long-non-coding RNAs (lncRNAs) have attracted attention because of their emerging role in many important biological mechanisms. The accumulating evidence indicates that the dysregulation of lncRNAs is associated with complex diseases. However, only a few lncRNA-disease associations have been experimentally validated and therefore, predicting potential lncRNAs that are associated with diseases become an important task. Current computational approaches often use known lncRNA-disease associations to predict potential lncRNA-disease links. In this work, we exploited the topology of multi-level networks to propose the LncRNA rankIng by NetwOrk DiffusioN (LION) approach to identify lncRNA-disease associations. The multi-level complex network consisted of lncRNA-protein, protein-protein interactions, and protein-disease associations. We applied the network diffusion algorithm of LION to predict the lncRNA-disease associations within the multi-level network. LION achieved an AUC value of 96.8% for cardiovascular diseases, 91.9% for cancer, and 90.2% for neurological diseases by using experimentally verified lncRNAs associated with diseases. Furthermore, compared to a similar approach (TPGLDA), LION performed better for cardiovascular diseases and cancer. Given the versatile role played by lncRNAs in different biological mechanisms that are perturbed in diseases, LION's accurate prediction of lncRNA-disease associations helps in ranking lncRNAs that could function as potential biomarkers and potential drug targets.

12.
NPJ Syst Biol Appl ; 5: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044086

RESUMEN

Untangling the complex interplay between phenotype and genotype is crucial to the effective characterization and subtyping of diseases. Here we build and analyze the multiplex network of 779 human diseases, which consists of a genotype-based layer and a phenotype-based layer. We show that diseases with common genetic constituents tend to share symptoms, and uncover how phenotype information helps boost genotype information. Moreover, we offer a flexible classification of diseases that considers their molecular underpinnings alongside their clinical manifestations. We detect cohesive groups of diseases that have high intra-group similarity at both the molecular and the phenotypic level. Inspecting these disease communities, we demonstrate the underlying pathways that connect diseases mechanistically. We observe monogenic disorders grouped together with complex diseases for which they increase the risk factor. We propose potentially new disease associations that arise as a unique feature of the information flow within and across the two layers.


Asunto(s)
Biología Computacional/métodos , Enfermedad/clasificación , Enfermedad/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Genotipo , Humanos , Fenotipo
13.
Hum Mol Genet ; 28(14): 2352-2364, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30997486

RESUMEN

Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are two pathologically distinct chronic lung diseases that are associated with cigarette smoking. Genetic studies have identified shared loci for COPD and IPF, including several loci with opposite directions of effect. The existence of additional shared genetic loci, as well as potential shared pathobiological mechanisms between the two diseases at the molecular level, remains to be explored. Taking a network-based approach, we built disease modules for COPD and IPF using genome-wide association studies-implicated genes. The two disease modules displayed strong disease signals in an independent gene expression data set of COPD and IPF lung tissue and showed statistically significant overlap and network proximity, sharing 19 genes, including ARHGAP12 and BCHE. To uncover pathways at the intersection of COPD and IPF, we developed a metric, NetPathScore, which prioritizes the pathways of a disease by their network overlap with another disease. Applying NetPathScore to the COPD and IPF disease modules enabled the determination of concordant and discordant pathways between these diseases. Concordant pathways between COPD and IPF included extracellular matrix remodeling, Mitogen-activated protein kinase (MAPK) signaling and ALK pathways, whereas discordant pathways included advanced glycosylation end product receptor signaling and telomere maintenance and extension pathways. Overall, our findings reveal shared molecular interaction regions between COPD and IPF and shed light on the congruent and incongruent biological processes lying at the intersection of these two complex diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Quinasa de Linfoma Anaplásico/metabolismo , Matriz Extracelular/metabolismo , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Homeostasis del Telómero/genética
14.
Front Genet ; 10: 294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031797

RESUMEN

Network medicine is an emerging area of research dealing with molecular and genetic interactions, network biomarkers of disease, and therapeutic target discovery. Large-scale biomedical data generation offers a unique opportunity to assess the effect and impact of cellular heterogeneity and environmental perturbations on the observed phenotype. Marrying the two, network medicine with biomedical data provides a framework to build meaningful models and extract impactful results at a network level. In this review, we survey existing network types and biomedical data sources. More importantly, we delve into ways in which the network medicine approach, aided by phenotype-specific biomedical data, can be gainfully applied. We provide three paradigms, mainly dealing with three major biological network archetypes: protein-protein interaction, expression-based, and gene regulatory networks. For each of these paradigms, we discuss a broad overview of philosophies under which various network methods work. We also provide a few examples in each paradigm as a test case of its successful application. Finally, we delineate several opportunities and challenges in the field of network medicine. We hope this review provides a lexicon for researchers from biological sciences and network theory to come on the same page to work on research areas that require interdisciplinary expertise. Taken together, the understanding gained from combining biomedical data with networks can be useful for characterizing disease etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive medicine with translational impact on personalized healthcare.

15.
Circulation ; 139(1): 78-96, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30586693

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) increases cardiovascular risk. Underlying mechanisms, however, remain obscure. The uremic toxin indoxyl sulfate is an independent cardiovascular risk factor in CKD. We explored the potential impact of indoxyl sulfate on proinflammatory activation of macrophages and its underlying mechanisms. METHODS: We examined in vitro the effects of clinically relevant concentrations of indoxyl sulfate on proinflammatory responses of macrophages and the roles of organic anion transporters and organic anion transporting polypeptides (OATPs). A systems approach, involving unbiased global proteomics, bioinformatics, and network analysis, then explored potential key pathways. To address the role of Delta-like 4 (Dll4) in indoxyl sulfate-induced macrophage activation and atherogenesis in CKD in vivo, we used 5/6 nephrectomy and Dll4 antibody in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. To further determine the relative contribution of OATP2B1 or Dll4 to proinflammatory activation of macrophages and atherogenesis in vivo, we used siRNA delivered by macrophage-targeted lipid nanoparticles in mice. RESULTS: We found that indoxyl sulfate-induced proinflammatory macrophage activation is mediated by its uptake through transporters, including OATP2B1, encoded by the SLCO2B1 gene. The global proteomics identified potential mechanisms, including Notch signaling and the ubiquitin-proteasome pathway, that mediate indoxyl sulfate-triggered proinflammatory macrophage activation. We chose the Notch pathway as an example of key candidates for validation of our target discovery platform and for further mechanistic studies. As predicted computationally, indoxyl sulfate triggered Notch signaling, which was preceded by the rapid induction of Dll4 protein. Dll4 induction may result from inhibition of the ubiquitin-proteasome pathway, via the deubiquitinating enzyme USP5. In mice, macrophage-targeted OATP2B1/Slco2b1 silencing and Dll4 antibody inhibited proinflammatory activation of peritoneal macrophages induced by indoxyl sulfate. In low-density lipoprotein receptor-deficient mice, Dll4 antibody abolished atherosclerotic lesion development accelerated in Ldlr-/- mice. Moreover, coadministration of indoxyl sulfate and OATP2B1/Slco2b1 or Dll4 siRNA encapsulated in macrophage-targeted lipid nanoparticles in Ldlr-/- mice suppressed lesion development. CONCLUSIONS: These results suggest that novel crosstalk between OATP2B1 and Dll4-Notch signaling in macrophages mediates indoxyl sulfate-induced vascular inflammation in CKD.


Asunto(s)
Aterosclerosis/metabolismo , Indicán/toxicidad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Receptores Notch/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Proteínas de Unión al Calcio , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Transportadores de Anión Orgánico/genética , Fenotipo , Placa Aterosclerótica , Células RAW 264.7 , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Notch/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
16.
Elife ; 72018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30303482

RESUMEN

The role of pro-inflammatory macrophage activation in cardiovascular disease (CVD) is a complex one amenable to network approaches. While an indispensible tool for elucidating the molecular underpinnings of complex diseases including CVD, the interactome is limited in its utility as it is not specific to any cell type, experimental condition or disease state. We introduced context-specificity to the interactome by combining it with co-abundance networks derived from unbiased proteomics measurements from activated macrophage-like cells. Each macrophage phenotype contributed to certain regions of the interactome. Using a network proximity-based prioritization method on the combined network, we predicted potential regulators of macrophage activation. Prediction performance significantly increased with the addition of co-abundance edges, and the prioritized candidates captured inflammation, immunity and CVD signatures. Integrating the novel network topology with transcriptomics and proteomics revealed top candidate drivers of inflammation. In vitro loss-of-function experiments demonstrated the regulatory role of these proteins in pro-inflammatory signaling.


When human cells or tissues are injured, the body triggers a response known as inflammation to repair the damage and protect itself from further harm. However, if the same issue keeps recurring, the tissues become inflamed for longer periods of time, which may ultimately lead to health problems. This is what could be happening in cardiovascular diseases, where long-term inflammation could damage the heart and blood vessels. Many different proteins interact with each other to control inflammation; gaining an insight into the nature of these interactions could help to pinpoint the role of each molecular actor. Researchers have used a combination of unbiased, large-scale experimental and computational approaches to develop the interactome, a map of the known interactions between all proteins in humans. However, interactions between proteins can change between cell types, or during disease. Here, Halu et al. aimed to refine the human interactome and identify new proteins involved in inflammation, especially in the context of cardiovascular disease. Cells called macrophages produce signals that trigger inflammation whey they detect damage in other cells or tissues. The experiments used a technique called proteomics to measure the amounts of all the proteins in human macrophages. Combining these data with the human interactome made it possible to predict new links between proteins known to have a role in inflammation and other proteins in the interactome. Further analysis using other sets of data from macrophages helped identify two new candidate proteins ­ GBP1 and WARS ­ that may promote inflammation. Halu et al. then used a genetic approach to deactivate the genes and decrease the levels of these two proteins in macrophages, which caused the signals that encourage inflammation to drop. These findings suggest that GBP1 and WARS regulate the activity of macrophages to promote inflammation. The two proteins could therefore be used as drug targets to treat cardiovascular diseases and other disorders linked to inflammation, but further studies will be needed to precisely dissect how GBP1 and WARS work in humans.


Asunto(s)
Activación de Macrófagos , Mapas de Interacción de Proteínas , Proteómica , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Inmunidad , Inflamación/patología , Macrófagos/metabolismo , Fenotipo , Unión Proteica , Curva ROC , Reproducibilidad de los Resultados , Transducción de Señal
17.
Sci Rep ; 8(1): 14439, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262855

RESUMEN

The polygenic nature of complex diseases offers potential opportunities to utilize network-based approaches that leverage the comprehensive set of protein-protein interactions (the human interactome) to identify new genes of interest and relevant biological pathways. However, the incompleteness of the current human interactome prevents it from reaching its full potential to extract network-based knowledge from gene discovery efforts, such as genome-wide association studies, for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we provide a framework that integrates the existing human interactome information with experimental protein-protein interaction data for FAM13A, one of the most highly associated genetic loci to COPD, to find a more comprehensive disease network module. We identified an initial disease network neighborhood by applying a random-walk method. Next, we developed a network-based closeness approach (CAB) that revealed 9 out of 96 FAM13A interacting partners identified by affinity purification assays were significantly close to the initial network neighborhood. Moreover, compared to a similar method (local radiality), the CAB approach predicts low-degree genes as potential candidates. The candidates identified by the network-based closeness approach were combined with the initial network neighborhood to build a comprehensive disease network module (163 genes) that was enriched with genes differentially expressed between controls and COPD subjects in alveolar macrophages, lung tissue, sputum, blood, and bronchial brushing datasets. Overall, we demonstrate an approach to find disease-related network components using new laboratory data to overcome incompleteness of the current interactome.


Asunto(s)
Bases de Datos Genéticas , Proteínas Activadoras de GTPasa , Sitios Genéticos , Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
18.
NPJ Syst Biol Appl ; 4: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977601

RESUMEN

Probing the dynamic control features of biological networks represents a new frontier in capturing the dysregulated pathways in complex diseases. Here, using patient samples obtained from a pancreatic islet transplantation program, we constructed a tissue-specific gene regulatory network and used the control centrality (Cc) concept to identify the high control centrality (HiCc) pathways, which might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found that HiCc pathway genes were significantly enriched with modest GWAS p-values in the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study. We identified variants regulating gene expression (expression quantitative loci, eQTL) of HiCc pathway genes in islet samples. These eQTL genes showed higher levels of differential expression compared to non-eQTL genes in low, medium, and high glucose concentrations in rat islets. Among genes with highly significant eQTL evidence, NFATC4 belonged to four HiCc pathways. We asked if the expressions of T2D-associated candidate genes from GWAS and literature are regulated by Nfatc4 in rat islets. Extensive in vitro silencing of Nfatc4 in rat islet cells displayed reduced expression of 16, and increased expression of four putative downstream T2D genes. Overall, our approach uncovers the mechanistic connection of NFATC4 with downstream targets including a previously unknown one, TCF7L2, and establishes the HiCc pathways' relationship to T2D.

19.
Hum Mol Genet ; 27(21): 3801-3812, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060175

RESUMEN

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
20.
JCI Insight ; 3(11)2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29875322

RESUMEN

Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.


Asunto(s)
Asma/genética , Regulación de la Expresión Génica/inmunología , Inflamación/genética , MicroARNs/metabolismo , Células Th2/inmunología , Animales , Asma/inmunología , Asma/patología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Cultivo Primario de Células , Mapas de Interacción de Proteínas/inmunología , Biología de Sistemas/métodos , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA